Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Jul 2;130(2):485–495. doi: 10.1083/jcb.130.2.485

Monoclonal antibodies to CD44 and their influence on hyaluronan recognition

PMCID: PMC2199925  PMID: 7542251

Abstract

Antibodies to CD44 have been used to inhibit a variety of processes which include lymphohemopoiesis, lymphocyte migration, and tumor metastasis. Some, but not all, CD44-mediated functions derive from its ability to serve as a receptor for hyaluronan (HA). However, sites on CD44 that interact with either ligands or antibodies are poorly understood. Interspecies rat/mouse CD44 chimeras were used to analyze the specificity of 25 mAbs and to determine that they recognize at least seven epitopes. Amino acid substitutions that resulted in loss of antibody recognition were all located in the region of homology to other cartilage link family proteins. While at least five epitopes were eliminated by single amino acid replacements, multiple residues had to be changed to destroy binding by other antibodies. One antibody was sensitive to changes in any of three separate parts of the molecule and some antibodies to distinct epitopes cross-blocked each other. Certain antibodies had the ability to increase HA binding by lymphocytes but this did not correlate absolutely with antibody specificity and was only partially attributable to CD44 cross-linking. Antibodies that consistently blocked HA recognition were all sensitive to amino acid changes within a short stretch of CD44. Such blocking antibodies interacted with CD44 more strongly than ligand in competition experiments. One large group of antibodies blocked ligand binding, but only with a particular cell line. This detailed analysis adds to our understanding of functional domains within CD44 and requirements for antibodies to influence recognition of one ligand.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams C., Deng Y. J., Steiner B., O'Toole T., Shattil S. J. Determinants of specificity of a baculovirus-expressed antibody Fab fragment that binds selectively to the activated form of integrin alpha IIb beta 3. J Biol Chem. 1994 Jul 22;269(29):18781–18788. [PubMed] [Google Scholar]
  2. Altieri D. C., Edgington T. S. A monoclonal antibody reacting with distinct adhesion molecules defines a transition in the functional state of the receptor CD11b/CD18 (Mac-1). J Immunol. 1988 Oct 15;141(8):2656–2660. [PubMed] [Google Scholar]
  3. Andrew D. P., Berlin C., Honda S., Yoshino T., Hamann A., Holzmann B., Kilshaw P. J., Butcher E. C. Distinct but overlapping epitopes are involved in alpha 4 beta 7-mediated adhesion to vascular cell adhesion molecule-1, mucosal addressin-1, fibronectin, and lymphocyte aggregation. J Immunol. 1994 Nov 1;153(9):3847–3861. [PubMed] [Google Scholar]
  4. Aruffo A., Stamenkovic I., Melnick M., Underhill C. B., Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990 Jun 29;61(7):1303–1313. doi: 10.1016/0092-8674(90)90694-a. [DOI] [PubMed] [Google Scholar]
  5. Bednarczyk J. L., Szabo M. C., Wygant J. N., Lazarovits A. I., McIntyre B. W. Identification of a combinatorial epitope expressed by the integrin alpha 4 beta 1 heterodimer involved in the regulation of cell adhesion. J Biol Chem. 1994 Mar 18;269(11):8348–8354. [PubMed] [Google Scholar]
  6. Champe M., McIntyre B. W., Berman P. W. Monoclonal antibodies that block the activity of leukocyte function-associated antigen 1 recognize three discrete epitopes in the inserted domain of CD11a. J Biol Chem. 1995 Jan 20;270(3):1388–1394. doi: 10.1074/jbc.270.3.1388. [DOI] [PubMed] [Google Scholar]
  7. Culty M., Miyake K., Kincade P. W., Sikorski E., Butcher E. C., Underhill C., Silorski E. The hyaluronate receptor is a member of the CD44 (H-CAM) family of cell surface glycoproteins. J Cell Biol. 1990 Dec;111(6 Pt 1):2765–2774. doi: 10.1083/jcb.111.6.2765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dougherty G. J., Cooper D. L., Memory J. F., Chiu R. K. Ligand binding specificity of alternatively spliced CD44 isoforms. Recognition and binding of hyaluronan by CD44R1. J Biol Chem. 1994 Mar 25;269(12):9074–9078. [PubMed] [Google Scholar]
  9. Figdor C. G., van Kooyk Y., Keizer G. D. On the mode of action of LFA-1. Immunol Today. 1990 Aug;11(8):277–280. doi: 10.1016/0167-5699(90)90112-m. [DOI] [PubMed] [Google Scholar]
  10. Frelinger A. L., 3rd, Cohen I., Plow E. F., Smith M. A., Roberts J., Lam S. C., Ginsberg M. H. Selective inhibition of integrin function by antibodies specific for ligand-occupied receptor conformers. J Biol Chem. 1990 Apr 15;265(11):6346–6352. [PubMed] [Google Scholar]
  11. Goldstein L. A., Zhou D. F., Picker L. J., Minty C. N., Bargatze R. F., Ding J. F., Butcher E. C. A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell. 1989 Mar 24;56(6):1063–1072. doi: 10.1016/0092-8674(89)90639-9. [DOI] [PubMed] [Google Scholar]
  12. Günthert U., Hofmann M., Rudy W., Reber S., Zöller M., Haussmann I., Matzku S., Wenzel A., Ponta H., Herrlich P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell. 1991 Apr 5;65(1):13–24. doi: 10.1016/0092-8674(91)90403-l. [DOI] [PubMed] [Google Scholar]
  13. He Q., Lesley J., Hyman R., Ishihara K., Kincade P. W. Molecular isoforms of murine CD44 and evidence that the membrane proximal domain is not critical for hyaluronate recognition. J Cell Biol. 1992 Dec;119(6):1711–1719. doi: 10.1083/jcb.119.6.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hermanowski-Vosatka A., Detmers P. A., Götze O., Silverstein S. C., Wright S. D. Clustering of ligand on the surface of a particle enhances adhesion to receptor-bearing cells. J Biol Chem. 1988 Nov 25;263(33):17822–17827. [PubMed] [Google Scholar]
  15. Hyman R., Lesley J., Schulte R. Somatic cell mutants distinguish CD44 expression and hyaluronic acid binding. Immunogenetics. 1991;33(5-6):392–395. doi: 10.1007/BF00216699. [DOI] [PubMed] [Google Scholar]
  16. Isacke C. M., Sauvage C. A., Hyman R., Lesley J., Schulte R., Trowbridge I. S. Identification and characterization of the human Pgp-1 glycoprotein. Immunogenetics. 1986;23(5):326–332. doi: 10.1007/BF00398797. [DOI] [PubMed] [Google Scholar]
  17. Knudson W., Bartnik E., Knudson C. B. Assembly of pericellular matrices by COS-7 cells transfected with CD44 lymphocyte-homing receptor genes. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4003–4007. doi: 10.1073/pnas.90.9.4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lesley J., He Q., Miyake K., Hamann A., Hyman R., Kincade P. W. Requirements for hyaluronic acid binding by CD44: a role for the cytoplasmic domain and activation by antibody. J Exp Med. 1992 Jan 1;175(1):257–266. doi: 10.1084/jem.175.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lesley J., Howes N., Perschl A., Hyman R. Hyaluronan binding function of CD44 is transiently activated on T cells during an in vivo immune response. J Exp Med. 1994 Jul 1;180(1):383–387. doi: 10.1084/jem.180.1.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lesley J., Hyman R. CD44 can be activated to function as an hyaluronic acid receptor in normal murine T cells. Eur J Immunol. 1992 Oct;22(10):2719–2723. doi: 10.1002/eji.1830221036. [DOI] [PubMed] [Google Scholar]
  21. Lesley J., Hyman R., Kincade P. W. CD44 and its interaction with extracellular matrix. Adv Immunol. 1993;54:271–335. doi: 10.1016/s0065-2776(08)60537-4. [DOI] [PubMed] [Google Scholar]
  22. Lesley J., Hyman R., Schulte R. Evidence that the Pgp-1 glycoprotein is expressed on thymus-homing progenitor cells of the thymus. Cell Immunol. 1985 Apr 1;91(2):397–403. doi: 10.1016/0008-8749(85)90237-0. [DOI] [PubMed] [Google Scholar]
  23. Lesley J., Kincade P. W., Hyman R. Antibody-induced activation of the hyaluronan receptor function of CD44 requires multivalent binding by antibody. Eur J Immunol. 1993 Aug;23(8):1902–1909. doi: 10.1002/eji.1830230826. [DOI] [PubMed] [Google Scholar]
  24. Lesley J., Schulte R., Hyman R. Binding of hyaluronic acid to lymphoid cell lines is inhibited by monoclonal antibodies against Pgp-1. Exp Cell Res. 1990 Apr;187(2):224–233. doi: 10.1016/0014-4827(90)90085-o. [DOI] [PubMed] [Google Scholar]
  25. Lesley J., Trowbridge I. S. Genetic characterization of a polymorphic murine cell-surface glycoprotein. Immunogenetics. 1982 Mar;15(3):313–320. doi: 10.1007/BF00364339. [DOI] [PubMed] [Google Scholar]
  26. Letarte M. Human p85 glycoprotein bears three distinct epitopes defined by several monoclonal antibodies. Mol Immunol. 1986 Jun;23(6):639–644. doi: 10.1016/0161-5890(86)90101-x. [DOI] [PubMed] [Google Scholar]
  27. Liao H. X., Levesque M. C., Patton K., Bergamo B., Jones D., Moody M. A., Telen M. J., Haynes B. F. Regulation of human CD44H and CD44E isoform binding to hyaluronan by phorbol myristate acetate and anti-CD44 monoclonal and polyclonal antibodies. J Immunol. 1993 Dec 1;151(11):6490–6499. [PubMed] [Google Scholar]
  28. Miyake K., Medina K. L., Hayashi S., Ono S., Hamaoka T., Kincade P. W. Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J Exp Med. 1990 Feb 1;171(2):477–488. doi: 10.1084/jem.171.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miyake K., Underhill C. B., Lesley J., Kincade P. W. Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med. 1990 Jul 1;172(1):69–75. doi: 10.1084/jem.172.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mizushima S., Nagata S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 1990 Sep 11;18(17):5322–5322. doi: 10.1093/nar/18.17.5322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Murakami S., Shimabukuro Y., Miki Y., Saho T., Hino E., Kasai D., Nozaki T., Kusumoto Y., Okada H. Inducible binding of human lymphocytes to hyaluronate via CD44 does not require cytoskeleton association but does require new protein synthesis. J Immunol. 1994 Jan 15;152(2):467–477. [PubMed] [Google Scholar]
  32. Neame P. J., Christner J. E., Baker J. R. The primary structure of link protein from rat chondrosarcoma proteoglycan aggregate. J Biol Chem. 1986 Mar 15;261(8):3519–3535. [PubMed] [Google Scholar]
  33. Neugebauer K. M., Reichardt L. F. Cell-surface regulation of beta 1-integrin activity on developing retinal neurons. Nature. 1991 Mar 7;350(6313):68–71. doi: 10.1038/350068a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nottenburg C., Rees G., St John T. Isolation of mouse CD44 cDNA: structural features are distinct from the primate cDNA. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8521–8525. doi: 10.1073/pnas.86.21.8521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. O'Toole T. E., Loftus J. C., Du X. P., Glass A. A., Ruggeri Z. M., Shattil S. J., Plow E. F., Ginsberg M. H. Affinity modulation of the alpha IIb beta 3 integrin (platelet GPIIb-IIIa) is an intrinsic property of the receptor. Cell Regul. 1990 Nov;1(12):883–893. doi: 10.1091/mbc.1.12.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Paterson D. J., Jefferies W. A., Green J. R., Brandon M. R., Corthesy P., Puklavec M., Williams A. F. Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol Immunol. 1987 Dec;24(12):1281–1290. doi: 10.1016/0161-5890(87)90122-2. [DOI] [PubMed] [Google Scholar]
  37. Peach R. J., Hollenbaugh D., Stamenkovic I., Aruffo A. Identification of hyaluronic acid binding sites in the extracellular domain of CD44. J Cell Biol. 1993 Jul;122(1):257–264. doi: 10.1083/jcb.122.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Perschl A., Lesley J., English N., Trowbridge I., Hyman R. Role of CD44 cytoplasmic domain in hyaluronan binding. Eur J Immunol. 1995 Feb;25(2):495–501. doi: 10.1002/eji.1830250228. [DOI] [PubMed] [Google Scholar]
  39. Picker L. J., Nakache M., Butcher E. C. Monoclonal antibodies to human lymphocyte homing receptors define a novel class of adhesion molecules on diverse cell types. J Cell Biol. 1989 Aug;109(2):927–937. doi: 10.1083/jcb.109.2.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rezaie A. R., Fiore M. M., Neuenschwander P. F., Esmon C. T., Morrissey J. H. Expression and purification of a soluble tissue factor fusion protein with an epitope for an unusual calcium-dependent antibody. Protein Expr Purif. 1992 Dec;3(6):453–460. doi: 10.1016/1046-5928(92)90062-2. [DOI] [PubMed] [Google Scholar]
  41. Roy S., Paborsky L. R., Vehar G. A. Self-association of tissue factor as revealed by chemical crosslinking. J Biol Chem. 1991 Mar 15;266(8):4665–4668. [PubMed] [Google Scholar]
  42. Rudy W., Hofmann M., Schwartz-Albiez R., Zöller M., Heider K. H., Ponta H., Herrlich P. The two major CD44 proteins expressed on a metastatic rat tumor cell line are derived from different splice variants: each one individually suffices to confer metastatic behavior. Cancer Res. 1993 Mar 15;53(6):1262–1268. [PubMed] [Google Scholar]
  43. Santos-Argumedo L., Teixeira C., Preece G., Kirkham P. A., Parkhouse R. M. A B lymphocyte surface molecule mediating activation and protection from apoptosis via calcium channels. J Immunol. 1993 Sep 15;151(6):3119–3130. [PubMed] [Google Scholar]
  44. Shih D. T., Edelman J. M., Horwitz A. F., Grunwald G. B., Buck C. A. Structure/function analysis of the integrin beta 1 subunit by epitope mapping. J Cell Biol. 1993 Sep;122(6):1361–1371. doi: 10.1083/jcb.122.6.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sims P. J., Ginsberg M. H., Plow E. F., Shattil S. J. Effect of platelet activation on the conformation of the plasma membrane glycoprotein IIb-IIIa complex. J Biol Chem. 1991 Apr 25;266(12):7345–7352. [PubMed] [Google Scholar]
  46. Stamenkovic I., Aruffo A., Amiot M., Seed B. The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO J. 1991 Feb;10(2):343–348. doi: 10.1002/j.1460-2075.1991.tb07955.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stearns D. J., Kurosawa S., Sims P. J., Esmon N. L., Esmon C. T. The interaction of a Ca2+-dependent monoclonal antibody with the protein C activation peptide region. Evidence for obligatory Ca2+ binding to both antigen and antibody. J Biol Chem. 1988 Jan 15;263(2):826–832. [PubMed] [Google Scholar]
  48. Sugimoto K., Tsurumaki Y., Hoshi H., Kadowaki S., LeBousse-Kerdiles M. C., Smadja-Joffe F., Mori K. J. Effects of anti-CD44 monoclonal antibody on adhesion of erythroid leukemic cells (ELM-I-1) to hematopoietic supportive cells (MS-5): CD44, but not hyaluronate-mediated, cell-cell adhesion. Exp Hematol. 1994 Jun;22(6):488–494. [PubMed] [Google Scholar]
  49. Takada Y., Puzon W. Identification of a regulatory region of integrin beta 1 subunit using activating and inhibiting antibodies. J Biol Chem. 1993 Aug 15;268(23):17597–17601. [PubMed] [Google Scholar]
  50. Thomas L., Byers H. R., Vink J., Stamenkovic I. CD44H regulates tumor cell migration on hyaluronate-coated substrate. J Cell Biol. 1992 Aug;118(4):971–977. doi: 10.1083/jcb.118.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Toyama-Sorimachi N., Miyasaka M. A novel ligand for CD44 is sulfated proteoglycan. Int Immunol. 1994 Apr;6(4):655–660. doi: 10.1093/intimm/6.4.655. [DOI] [PubMed] [Google Scholar]
  52. Trowbridge I. S., Lesley J., Schulte R., Hyman R., Trotter J. Biochemical characterization and cellular distribution of a polymorphic, murine cell-surface glycoprotein expressed on lymphoid tissues. Immunogenetics. 1982 Mar;15(3):299–312. doi: 10.1007/BF00364338. [DOI] [PubMed] [Google Scholar]
  53. Wolffe E. J., Gause W. C., Pelfrey C. M., Holland S. M., Steinberg A. D., August J. T. The cDNA sequence of mouse Pgp-1 and homology to human CD44 cell surface antigen and proteoglycan core/link proteins. J Biol Chem. 1990 Jan 5;265(1):341–347. [PubMed] [Google Scholar]
  54. Wu L., Kincade P. W., Shortman K. The CD44 expressed on the earliest intrathymic precursor population functions as a thymus homing molecule but does not bind to hyaluronate. Immunol Lett. 1993 Sep;38(1):69–75. doi: 10.1016/0165-2478(93)90121-h. [DOI] [PubMed] [Google Scholar]
  55. Yang B., Yang B. L., Savani R. C., Turley E. A. Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein. EMBO J. 1994 Jan 15;13(2):286–296. doi: 10.1002/j.1460-2075.1994.tb06261.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zhou D. F., Ding J. F., Picker L. J., Bargatze R. F., Butcher E. C., Goeddel D. V. Molecular cloning and expression of Pgp-1. The mouse homolog of the human H-CAM (Hermes) lymphocyte homing receptor. J Immunol. 1989 Nov 15;143(10):3390–3395. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES