Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Jul 2;130(2):431–439. doi: 10.1083/jcb.130.2.431

In vivo requirement of protein prenylation for maintenance of retinal cytoarchitecture and photoreceptor structure

PMCID: PMC2199930  PMID: 7615641

Abstract

Recent studies have demonstrated that inhibition of mevalonate synthesis in cultured cells leads to altered cell morphology due to inhibition of protein prenylation. To investigate the effects in vivo of mevalonate deprivation in nondividing, terminally differentiated neural cells, we have analyzed the effects on retinal tissue of intravitreal injection of lovastatin, a potent inhibitor of the mevalonate-producing enzyme, HMG-CoA reductase. A single injection of lovastatin (0.25 mumol) produced profound dysplastic-like changes in adult rat retinas primarily involving the photoreceptor layer. Within 2 d after injection, photoreceptor nuclei migrated in a circular pattern resulting in the formation of rosette-like structures by 4 d. Also during this period, photoreceptor inner and outer segment degeneration was evident. By 21 d, intact photoreceptor nuclei with remnants of inner and outer segments were dispersed throughout all retinal layers. To investigate the biochemical specificity of the lovastatin-induced alterations, and to distinguish the relative importance of the various branches of the mevalonate pathway, the incorporation of [3H]acetate into retinal lipids was examined in the presence and absence of metabolic inhibitors. HPLC analysis of lovastatin-treated retinas revealed a dramatic reduction in the incorporation of intravitreally injected [3H]acetate into nonsaponifiable lipids, compared with controls. In contrast, intravitreal injection of NB-598, a specific inhibitor of squalene epoxidase, eliminated the conversion of newly synthesized squalene to sterols without obvious pathology. Hence, involvement to the sterol branch of isoprenoid metabolism in the lovastatin-induced morphologic disruption was obviated. Intravitreal injection of 0.27 mumol of N-acetyl-S-trans,trans-farnesyl-L-cysteine (AFC), an inhibitor of carboxyl methyltransferase activity and prenylated protein function, produced morphologic changes that were virtually indistinguishable from those induced with lovastatin. These results implicate a defect in protein prenylation in the lovastatin- induced retinal degeneration, and suggest the presence of a dynamic pathway in the retina that requires isoprenylated proteins to maintain retinal cytoarchitecture.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anant J. S., Ong O. C., Xie H. Y., Clarke S., O'Brien P. J., Fung B. K. In vivo differential prenylation of retinal cyclic GMP phosphodiesterase catalytic subunits. J Biol Chem. 1992 Jan 15;267(2):687–690. [PubMed] [Google Scholar]
  2. Deretic D., Papermaster D. S. Rab6 is associated with a compartment that transports rhodopsin from the trans-Golgi to the site of rod outer segment disk formation in frog retinal photoreceptors. J Cell Sci. 1993 Nov;106(Pt 3):803–813. doi: 10.1242/jcs.106.3.803. [DOI] [PubMed] [Google Scholar]
  3. Ding J., Lu D. J., Pérez-Sala D., Ma Y. T., Maddox J. F., Gilbert B. A., Badwey J. A., Rando R. R. Farnesyl-L-cysteine analogs can inhibit or initiate superoxide release by human neutrophils. J Biol Chem. 1994 Jun 17;269(24):16837–16844. [PubMed] [Google Scholar]
  4. Dugan R. E., Slakey L. L., Briedis A. V., Porter J. W. Factors affecting the diurnal variation in the level of -hydroxy- -methylglutaryl coenzyme A reductase and cholesterol-synthesizing activity in rat liver. Arch Biochem Biophys. 1972 Sep;152(1):21–27. doi: 10.1016/0003-9861(72)90188-9. [DOI] [PubMed] [Google Scholar]
  5. Fenton R. G., Kung H. F., Longo D. L., Smith M. R. Regulation of intracellular actin polymerization by prenylated cellular proteins. J Cell Biol. 1992 Apr;117(2):347–356. doi: 10.1083/jcb.117.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fliesler S. J., Anderson R. E. Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res. 1983;22(2):79–131. doi: 10.1016/0163-7827(83)90004-8. [DOI] [PubMed] [Google Scholar]
  7. Fliesler S. J., Florman R., Rapp L. M., Pittler S. J., Keller R. K. In vivo biosynthesis of cholesterol in the rat retina. FEBS Lett. 1993 Dec 6;335(2):234–238. doi: 10.1016/0014-5793(93)80736-e. [DOI] [PubMed] [Google Scholar]
  8. Fliesler S. J., Rapp L. M., Hollyfield J. G. Photoreceptor-specific degeneration caused by tunicamycin. Nature. 1984 Oct 11;311(5986):575–577. doi: 10.1038/311575a0. [DOI] [PubMed] [Google Scholar]
  9. Fukada Y., Takao T., Ohguro H., Yoshizawa T., Akino T., Shimonishi Y. Farnesylated gamma-subunit of photoreceptor G protein indispensable for GTP-binding. Nature. 1990 Aug 16;346(6285):658–660. doi: 10.1038/346658a0. [DOI] [PubMed] [Google Scholar]
  10. Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  11. Hall A. Ras-related proteins. Curr Opin Cell Biol. 1993 Apr;5(2):265–268. doi: 10.1016/0955-0674(93)90114-6. [DOI] [PubMed] [Google Scholar]
  12. Hancock J. F., Cadwallader K., Marshall C. J. Methylation and proteolysis are essential for efficient membrane binding of prenylated p21K-ras(B). EMBO J. 1991 Mar;10(3):641–646. doi: 10.1002/j.1460-2075.1991.tb07992.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horie M., Tsuchiya Y., Hayashi M., Iida Y., Iwasawa Y., Nagata Y., Sawasaki Y., Fukuzumi H., Kitani K., Kamei T. NB-598: a potent competitive inhibitor of squalene epoxidase. J Biol Chem. 1990 Oct 25;265(30):18075–18078. [PubMed] [Google Scholar]
  14. Humphries P., Kenna P., Farrar G. J. On the molecular genetics of retinitis pigmentosa. Science. 1992 May 8;256(5058):804–808. doi: 10.1126/science.1589761. [DOI] [PubMed] [Google Scholar]
  15. Huzoor-Akbar, Wang W., Kornhauser R., Volker C., Stock J. B. Protein prenylcysteine analog inhibits agonist-receptor-mediated signal transduction in human platelets. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):868–872. doi: 10.1073/pnas.90.3.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Inglese J., Glickman J. F., Lorenz W., Caron M. G., Lefkowitz R. J. Isoprenylation of a protein kinase. Requirement of farnesylation/alpha-carboxyl methylation for full enzymatic activity of rhodopsin kinase. J Biol Chem. 1992 Jan 25;267(3):1422–1425. [PubMed] [Google Scholar]
  17. Jalink K., van Corven E. J., Hengeveld T., Morii N., Narumiya S., Moolenaar W. H. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J Cell Biol. 1994 Aug;126(3):801–810. doi: 10.1083/jcb.126.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kajiwara K., Hahn L. B., Mukai S., Travis G. H., Berson E. L., Dryja T. P. Mutations in the human retinal degeneration slow gene in autosomal dominant retinitis pigmentosa. Nature. 1991 Dec 12;354(6353):480–483. doi: 10.1038/354480a0. [DOI] [PubMed] [Google Scholar]
  19. Keller R. K., Fliesler S. J., Nellis S. W. Isoprenoid biosynthesis in the retina. Quantitation of the sterol and dolichol biosynthetic pathways. J Biol Chem. 1988 Feb 15;263(5):2250–2254. [PubMed] [Google Scholar]
  20. Kita T., Brown M. S., Goldstein J. L. Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in livers of mice treated with mevinolin, a competitive inhibitor of the reductase. J Clin Invest. 1980 Nov;66(5):1094–1100. doi: 10.1172/JCI109938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lahav M., Albert D. M., Craft J. L. Light and electron microscopic study of dysplastic rosette-like structures occurring in the disorganized mature retina. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1975;195(1):57–68. doi: 10.1007/BF02390031. [DOI] [PubMed] [Google Scholar]
  22. Ma Y. T., Shi Y. Q., Lim Y. H., McGrail S. H., Ware J. A., Rando R. R. Mechanistic studies on human platelet isoprenylated protein methyltransferase: farnesylcysteine analogs block platelet aggregation without inhibiting the methyltransferase. Biochemistry. 1994 May 10;33(18):5414–5420. doi: 10.1021/bi00184a009. [DOI] [PubMed] [Google Scholar]
  23. Madreperla S. A., Adler R. Opposing microtubule- and actin-dependent forces in the development and maintenance of structural polarity in retinal photoreceptors. Dev Biol. 1989 Jan;131(1):149–160. doi: 10.1016/s0012-1606(89)80046-6. [DOI] [PubMed] [Google Scholar]
  24. Maltese W. A. Posttranslational modification of proteins by isoprenoids in mammalian cells. FASEB J. 1990 Dec;4(15):3319–3328. doi: 10.1096/fasebj.4.15.2123808. [DOI] [PubMed] [Google Scholar]
  25. Metz S. A., Rabaglia M. E., Stock J. B., Kowluru A. Modulation of insulin secretion from normal rat islets by inhibitors of the post-translational modifications of GTP-binding proteins. Biochem J. 1993 Oct 1;295(Pt 1):31–40. doi: 10.1042/bj2950031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nobes C., Hall A. Regulation and function of the Rho subfamily of small GTPases. Curr Opin Genet Dev. 1994 Feb;4(1):77–81. doi: 10.1016/0959-437x(94)90094-9. [DOI] [PubMed] [Google Scholar]
  27. Norman J. C., Price L. S., Ridley A. J., Hall A., Koffer A. Actin filament organization in activated mast cells is regulated by heterotrimeric and small GTP-binding proteins. J Cell Biol. 1994 Aug;126(4):1005–1015. doi: 10.1083/jcb.126.4.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ohguro H., Fukada Y., Takao T., Shimonishi Y., Yoshizawa T., Akino T. Carboxyl methylation and farnesylation of transducin gamma-subunit synergistically enhance its coupling with metarhodopsin II. EMBO J. 1991 Dec;10(12):3669–3674. doi: 10.1002/j.1460-2075.1991.tb04934.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Parish C. A., Rando R. R. Functional significance of G protein carboxymethylation. Biochemistry. 1994 Aug 23;33(33):9986–9991. doi: 10.1021/bi00199a023. [DOI] [PubMed] [Google Scholar]
  30. Paterson H. F., Self A. J., Garrett M. D., Just I., Aktories K., Hall A. Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol. 1990 Sep;111(3):1001–1007. doi: 10.1083/jcb.111.3.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Petrov V. M., Artamonov I. D., Lipkin V. M. Small GTP-binding proteins of squid photoreceptor. Interaction with photoactivated rhodopsin. FEBS Lett. 1994 Jan 17;337(3):274–276. doi: 10.1016/0014-5793(94)80207-6. [DOI] [PubMed] [Google Scholar]
  32. Philips M. R., Pillinger M. H., Staud R., Volker C., Rosenfeld M. G., Weissmann G., Stock J. B. Carboxyl methylation of Ras-related proteins during signal transduction in neutrophils. Science. 1993 Feb 12;259(5097):977–980. doi: 10.1126/science.8438158. [DOI] [PubMed] [Google Scholar]
  33. Pittler S. J., Baehr W. Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8322–8326. doi: 10.1073/pnas.88.19.8322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pittler S. J., Fliesler S. J., Rapp L. M. Novel morphological changes in rat retina induced by intravitreal injection of lovastatin. Exp Eye Res. 1992 Jan;54(1):149–152. doi: 10.1016/0014-4835(92)90080-c. [DOI] [PubMed] [Google Scholar]
  35. Pérez-Sala D., Tan E. W., Cañada F. J., Rando R. R. Methylation and demethylation reactions of guanine nucleotide-binding proteins of retinal rod outer segments. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3043–3046. doi: 10.1073/pnas.88.8.3043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Qin N., Pittler S. J., Baehr W. In vitro isoprenylation and membrane association of mouse rod photoreceptor cGMP phosphodiesterase alpha and beta subunits expressed in bacteria. J Biol Chem. 1992 Apr 25;267(12):8458–8463. [PubMed] [Google Scholar]
  37. Rapp L. M., Smith S. C. Morphologic comparisons between rhodopsin-mediated and short-wavelength classes of retinal light damage. Invest Ophthalmol Vis Sci. 1992 Nov;33(12):3367–3377. [PubMed] [Google Scholar]
  38. Ridley A. J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992 Aug 7;70(3):389–399. doi: 10.1016/0092-8674(92)90163-7. [DOI] [PubMed] [Google Scholar]
  39. Ridley A. J., Paterson H. F., Johnston C. L., Diekmann D., Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992 Aug 7;70(3):401–410. doi: 10.1016/0092-8674(92)90164-8. [DOI] [PubMed] [Google Scholar]
  40. Scheer A., Gierschik P. Farnesylcysteine analogues inhibit chemotactic peptide receptor-mediated G-protein activation in human HL-60 granulocyte membranes. FEBS Lett. 1993 Mar 15;319(1-2):110–114. doi: 10.1016/0014-5793(93)80047-x. [DOI] [PubMed] [Google Scholar]
  41. Schroepfer G. J., Jr Sterol biosynthesis. Annu Rev Biochem. 1981;50:585–621. doi: 10.1146/annurev.bi.50.070181.003101. [DOI] [PubMed] [Google Scholar]
  42. Sinensky M., Lutz R. J. The prenylation of proteins. Bioessays. 1992 Jan;14(1):25–31. doi: 10.1002/bies.950140106. [DOI] [PubMed] [Google Scholar]
  43. Stieve H., Niemeyer B., Aktories K., Hamm H. E. Disturbing GTP-binding protein function through microinjection into the visual cell of Limulus. Z Naturforsch C. 1992 Nov-Dec;47(11-12):915–921. doi: 10.1515/znc-1992-11-1220. [DOI] [PubMed] [Google Scholar]
  44. Suber M. L., Pittler S. J., Qin N., Wright G. C., Holcombe V., Lee R. H., Craft C. M., Lolley R. N., Baehr W., Hurwitz R. L. Irish setter dogs affected with rod/cone dysplasia contain a nonsense mutation in the rod cGMP phosphodiesterase beta-subunit gene. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3968–3972. doi: 10.1073/pnas.90.9.3968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sung C. H., Schneider B. G., Agarwal N., Papermaster D. S., Nathans J. Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8840–8844. doi: 10.1073/pnas.88.19.8840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Volker C., Miller R. A., McCleary W. R., Rao A., Poenie M., Backer J. M., Stock J. B. Effects of farnesylcysteine analogs on protein carboxyl methylation and signal transduction. J Biol Chem. 1991 Nov 15;266(32):21515–21522. [PubMed] [Google Scholar]
  47. Wieland T., Ulibarri I., Gierschik P., Hall A., Aktories K., Jakobs K. H. Interaction of recombinant rho A GTP-binding proteins with photoexcited rhodopsin. FEBS Lett. 1990 Nov 12;274(1-2):111–114. doi: 10.1016/0014-5793(90)81342-l. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES