Abstract
The initiation of limb development depends on the site specific proliferation of the mesenchyme by the signals from the apical ectodermal ridge (AER) in embryonic mouse. We have previously reported that the local expression of Hst-1/Fgf-4 transcripts in AER of the mouse limb bud is developmentally regulated, expressed at 11 and 12 days post coitus (p.c.) embryo. In an effort to further understand the role of Hst-1/FGF-4 in mouse limb development, an antisense oligodeoxynucleotides (ODNs) study was performed. We first established a novel organ culture system to study mouse limb development in vitro. This system allows mouse limb bud at 9.5-10-d p.c. embryo, when placed on a sheet of extracellular matrix in a defined medium, to differentiate into a limb at 12.5-d p.c. embryo within 4.5 d. Using this organ culture system, we have shown that exposure of 9.5-10-d p.c. embryonal limb bud explants to antisense ODNs of Hst-1/FGF-4 blocks limb development. In contrast, sense and scrambled ODNs have no inhibitory effect on limb outgrowth, suggesting that Hst-1/FGF-4 may work as a potent inducing factor for mouse limb development.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Biro S., Fu Y. M., Yu Z. X., Epstein S. E. Inhibitory effects of antisense oligodeoxynucleotides targeting c-myc mRNA on smooth muscle cell proliferation and migration. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):654–658. doi: 10.1073/pnas.90.2.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryant S. V., Gardiner D. M. Retinoic acid, local cell-cell interactions, and pattern formation in vertebrate limbs. Dev Biol. 1992 Jul;152(1):1–25. doi: 10.1016/0012-1606(92)90152-7. [DOI] [PubMed] [Google Scholar]
- Burgess W. H., Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem. 1989;58:575–606. doi: 10.1146/annurev.bi.58.070189.003043. [DOI] [PubMed] [Google Scholar]
- Crossley P. H., Martin G. R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development. 1995 Feb;121(2):439–451. doi: 10.1242/dev.121.2.439. [DOI] [PubMed] [Google Scholar]
- Delli Bovi P., Basilico C. Isolation of a rearranged human transforming gene following transfection of Kaposi sarcoma DNA. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5660–5664. doi: 10.1073/pnas.84.16.5660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delli Bovi P., Curatola A. M., Kern F. G., Greco A., Ittmann M., Basilico C. An oncogene isolated by transfection of Kaposi's sarcoma DNA encodes a growth factor that is a member of the FGF family. Cell. 1987 Aug 28;50(5):729–737. doi: 10.1016/0092-8674(87)90331-x. [DOI] [PubMed] [Google Scholar]
- DiMario J., Buffinger N., Yamada S., Strohman R. C. Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science. 1989 May 12;244(4905):688–690. doi: 10.1126/science.2717945. [DOI] [PubMed] [Google Scholar]
- Diekwisch T., David S., Bringas P., Jr, Santos V., Slavkin H. C. Antisense inhibition of AMEL translation demonstrates supramolecular controls for enamel HAP crystal growth during embryonic mouse molar development. Development. 1993 Feb;117(2):471–482. doi: 10.1242/dev.117.2.471. [DOI] [PubMed] [Google Scholar]
- Dono R., Zeller R. Cell-type-specific nuclear translocation of fibroblast growth factor-2 isoforms during chicken kidney and limb morphogenesis. Dev Biol. 1994 Jun;163(2):316–330. doi: 10.1006/dbio.1994.1151. [DOI] [PubMed] [Google Scholar]
- Fallon J. F., López A., Ros M. A., Savage M. P., Olwin B. B., Simandl B. K. FGF-2: apical ectodermal ridge growth signal for chick limb development. Science. 1994 Apr 1;264(5155):104–107. doi: 10.1126/science.7908145. [DOI] [PubMed] [Google Scholar]
- Feldman B., Poueymirou W., Papaioannou V. E., DeChiara T. M., Goldfarb M. Requirement of FGF-4 for postimplantation mouse development. Science. 1995 Jan 13;267(5195):246–249. doi: 10.1126/science.7809630. [DOI] [PubMed] [Google Scholar]
- Folkman J., Weisz P. B., Joullié M. M., Li W. W., Ewing W. R. Control of angiogenesis with synthetic heparin substitutes. Science. 1989 Mar 17;243(4897):1490–1493. doi: 10.1126/science.2467380. [DOI] [PubMed] [Google Scholar]
- Francis P. H., Richardson M. K., Brickell P. M., Tickle C. Bone morphogenetic proteins and a signalling pathway that controls patterning in the developing chick limb. Development. 1994 Jan;120(1):209–218. doi: 10.1242/dev.120.1.209. [DOI] [PubMed] [Google Scholar]
- Goldfarb M. The fibroblast growth factor family. Cell Growth Differ. 1990 Sep;1(9):439–445. [PubMed] [Google Scholar]
- Guvakova M. A., Yakubov L. A., Vlodavsky I., Tonkinson J. L., Stein C. A. Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem. 1995 Feb 10;270(6):2620–2627. doi: 10.1074/jbc.270.6.2620. [DOI] [PubMed] [Google Scholar]
- Izpisúa-Belmonte J. C., Tickle C., Dollé P., Wolpert L., Duboule D. Expression of the homeobox Hox-4 genes and the specification of position in chick wing development. Nature. 1991 Apr 18;350(6319):585–589. doi: 10.1038/350585a0. [DOI] [PubMed] [Google Scholar]
- Kronmiller J. E., Upholt W. B., Kollar E. J. EGF antisense oligodeoxynucleotides block murine odontogenesis in vitro. Dev Biol. 1991 Oct;147(2):485–488. doi: 10.1016/0012-1606(91)90307-o. [DOI] [PubMed] [Google Scholar]
- Laufer E., Nelson C. E., Johnson R. L., Morgan B. A., Tabin C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell. 1994 Dec 16;79(6):993–1003. doi: 10.1016/0092-8674(94)90030-2. [DOI] [PubMed] [Google Scholar]
- Lyons K. M., Pelton R. W., Hogan B. L. Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A). Development. 1990 Aug;109(4):833–844. doi: 10.1242/dev.109.4.833. [DOI] [PubMed] [Google Scholar]
- Malcolm A. D. Uses of antisense nucleic acids--an introduction. Biochem Soc Trans. 1992 Nov;20(4):745–746. doi: 10.1042/bst0200745. [DOI] [PubMed] [Google Scholar]
- Miyamoto M., Naruo K., Seko C., Matsumoto S., Kondo T., Kurokawa T. Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol Cell Biol. 1993 Jul;13(7):4251–4259. doi: 10.1128/mcb.13.7.4251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niswander L., Jeffrey S., Martin G. R., Tickle C. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature. 1994 Oct 13;371(6498):609–612. doi: 10.1038/371609a0. [DOI] [PubMed] [Google Scholar]
- Niswander L., Martin G. R. FGF-4 and BMP-2 have opposite effects on limb growth. Nature. 1993 Jan 7;361(6407):68–71. doi: 10.1038/361068a0. [DOI] [PubMed] [Google Scholar]
- Niswander L., Martin G. R. Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development. 1992 Mar;114(3):755–768. doi: 10.1242/dev.114.3.755. [DOI] [PubMed] [Google Scholar]
- Niswander L., Tickle C., Vogel A., Booth I., Martin G. R. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell. 1993 Nov 5;75(3):579–587. doi: 10.1016/0092-8674(93)90391-3. [DOI] [PubMed] [Google Scholar]
- Oberlender S. A., Tuan R. S. Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development. 1994 Jan;120(1):177–187. doi: 10.1242/dev.120.1.177. [DOI] [PubMed] [Google Scholar]
- Ohuchi H., Yoshioka H., Tanaka A., Kawakami Y., Nohno T., Noji S. Involvement of androgen-induced growth factor (FGF-8) gene in mouse embryogenesis and morphogenesis. Biochem Biophys Res Commun. 1994 Oct 28;204(2):882–888. doi: 10.1006/bbrc.1994.2542. [DOI] [PubMed] [Google Scholar]
- Potts J. D., Dagle J. M., Walder J. A., Weeks D. L., Runyan R. B. Epithelial-mesenchymal transformation of embryonic cardiac endothelial cells is inhibited by a modified antisense oligodeoxynucleotide to transforming growth factor beta 3. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1516–1520. doi: 10.1073/pnas.88.4.1516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riley B. B., Savage M. P., Simandl B. K., Olwin B. B., Fallon J. F. Retroviral expression of FGF-2 (bFGF) affects patterning in chick limb bud. Development. 1993 May;118(1):95–104. doi: 10.1242/dev.118.1.95. [DOI] [PubMed] [Google Scholar]
- Rutledge J. C., Shourbaji A. G., Hughes L. A., Polifka J. E., Cruz Y. P., Bishop J. B., Generoso W. M. Limb and lower-body duplications induced by retinoic acid in mice. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5436–5440. doi: 10.1073/pnas.91.12.5436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakamoto H., Mori M., Taira M., Yoshida T., Matsukawa S., Shimizu K., Sekiguchi M., Terada M., Sugimura T. Transforming gene from human stomach cancers and a noncancerous portion of stomach mucosa. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3997–4001. doi: 10.1073/pnas.83.11.3997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sariola H., Saarma M., Sainio K., Arumäe U., Palgi J., Vaahtokari A., Thesleff I., Karavanov A. Dependence of kidney morphogenesis on the expression of nerve growth factor receptor. Science. 1991 Oct 25;254(5031):571–573. doi: 10.1126/science.1658930. [DOI] [PubMed] [Google Scholar]
- Savage M. P., Hart C. E., Riley B. B., Sasse J., Olwin B. B., Fallon J. F. Distribution of FGF-2 suggests it has a role in chick limb bud growth. Dev Dyn. 1993 Nov;198(3):159–170. doi: 10.1002/aja.1001980302. [DOI] [PubMed] [Google Scholar]
- Shakin-Eshleman S. H., Liebhaber S. A. Influence of duplexes 3' to the mRNA initiation codon on the efficiency of monosome formation. Biochemistry. 1988 May 31;27(11):3975–3982. doi: 10.1021/bi00411a013. [DOI] [PubMed] [Google Scholar]
- Slack J. M., Darlington B. G., Heath J. K., Godsave S. F. Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature. 1987 Mar 12;326(6109):197–200. doi: 10.1038/326197a0. [DOI] [PubMed] [Google Scholar]
- Souza P., Sedlackova L., Kuliszewski M., Wang J., Liu J., Tseu I., Liu M., Tanswell A. K., Post M. Antisense oligodeoxynucleotides targeting PDGF-B mRNA inhibit cell proliferation during embryonic rat lung development. Development. 1994 Aug;120(8):2163–2173. doi: 10.1242/dev.120.8.2163. [DOI] [PubMed] [Google Scholar]
- Suzuki H. R., Sakamoto H., Yoshida T., Sugimura T., Terada M., Solursh M. Localization of HstI transcripts to the apical ectodermal ridge in the mouse embryo. Dev Biol. 1992 Mar;150(1):219–222. doi: 10.1016/0012-1606(92)90020-h. [DOI] [PubMed] [Google Scholar]
- Tabin C. J. Retinoids, homeoboxes, and growth factors: toward molecular models for limb development. Cell. 1991 Jul 26;66(2):199–217. doi: 10.1016/0092-8674(91)90612-3. [DOI] [PubMed] [Google Scholar]
- Tabin C. The initiation of the limb bud: growth factors, Hox genes, and retinoids. Cell. 1995 Mar 10;80(5):671–674. doi: 10.1016/0092-8674(95)90343-7. [DOI] [PubMed] [Google Scholar]
- Tanaka A., Miyamoto K., Minamino N., Takeda M., Sato B., Matsuo H., Matsumoto K. Cloning and characterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8928–8932. doi: 10.1073/pnas.89.19.8928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tickle C. Retinoic acid and chick limb bud development. Dev Suppl. 1991;1:113–121. [PubMed] [Google Scholar]
- Wang E. A., Rosen V., Cordes P., Hewick R. M., Kriz M. J., Luxenberg D. P., Sibley B. S., Wozney J. M. Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9484–9488. doi: 10.1073/pnas.85.24.9484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wozney J. M., Rosen V., Celeste A. J., Mitsock L. M., Whitters M. J., Kriz R. W., Hewick R. M., Wang E. A. Novel regulators of bone formation: molecular clones and activities. Science. 1988 Dec 16;242(4885):1528–1534. doi: 10.1126/science.3201241. [DOI] [PubMed] [Google Scholar]
- Yoshida T., Miyagawa K., Odagiri H., Sakamoto H., Little P. F., Terada M., Sugimura T. Genomic sequence of hst, a transforming gene encoding a protein homologous to fibroblast growth factors and the int-2-encoded protein. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7305–7309. doi: 10.1073/pnas.84.20.7305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida T., Muramatsu H., Muramatsu T., Sakamoto H., Katoh O., Sugimura T., Terada M. Differential expression of two homologous and clustered oncogenes, Hst1 and Int-2, during differentiation of F9 cells. Biochem Biophys Res Commun. 1988 Dec 15;157(2):618–625. doi: 10.1016/s0006-291x(88)80295-x. [DOI] [PubMed] [Google Scholar]
- Yoshida T., Tsutsumi M., Sakamoto H., Miyagawa K., Teshima S., Sugimura T., Terada M. Expression of the HST1 oncogene in human germ cell tumors. Biochem Biophys Res Commun. 1988 Sep 30;155(3):1324–1329. doi: 10.1016/s0006-291x(88)81286-5. [DOI] [PubMed] [Google Scholar]