Abstract
In innervated adult skeletal muscles, the Golgi apparatus (GA) displays a set of remarkable features in comparison with embryonic myotubes. We have previously shown by immunocytochemical techniques, that in adult innervated fibers, the GA is no longer associated with all the nuclei, but appears to be concentrated mostly in the subneural domain under the nerve endings in chick (Jasmin, B. J., J. Cartaud, M. Bornens, and J.- P. Changeux. 1989. Proc. Natl. Acad. Sci. USA. 86:7218-7222) and rat (Jasmin, B. J., C. Antony, J.-P. Changeux, and J. Cartaud. 1995. Eur. J. Neurosci. 7:470-479). In addition to such compartmentalization, biochemical modifications take place that suggest a functional specialization of the subsynaptic GA. Here, we focused on the developmental regulation of the membrane traffic organization during the early steps of synaptogenesis in mouse diaphragm muscle. We investigated by immunofluorescence microscopy on cryosections, the distribution of selected subcompartments of the exocytic pathway, and also of a representative endocytic subcompartment with respect to the junctional or extrajunctional domains of developing myofibers. We show that throughout development the RER, the intermediate compartment, and the prelysosomal compartment (mannose 6-phosphate receptor-rich compartment) are homogeneously distributed along the fibers, irrespective of the subneural or extrajunctional domains. In contrast, at embryonic day E17, thus 2-3 d after the onset of innervation, most GA markers become restricted to the subneural domain. Interestingly, some Golgi markers (e.g., alpha-mannosidase II, TGN 38, present in the embryonic myotubes) are no longer detected in the innervated fiber even in the subsynaptic GA. These data show that in innervated muscle fibers, the distal part of the biosynthetic pathway, i.e., the GA, is remodeled selectively shortly after the onset of innervation. As a consequence, in the innervated fiber, the GA exists both as an evenly distributed organelle with basic functions, and as a highly differentiated subsynaptic organelle ensuring maturation and targeting of synaptic proteins. Finally, in the adult, denervation of a hemidiaphragm causes a burst of reexpression of all Golgi markers in extrasynaptic domains of the fibers, hence showing that the particular organization of the secretory pathway is placed under nerve control.
Full Text
The Full Text of this article is available as a PDF (3.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson M. J., Cohen M. W. Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J Physiol. 1977 Jul;268(3):757–773. doi: 10.1113/jphysiol.1977.sp011880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antony C., Cibert C., Géraud G., Santa Maria A., Maro B., Mayau V., Goud B. The small GTP-binding protein rab6p is distributed from medial Golgi to the trans-Golgi network as determined by a confocal microscopic approach. J Cell Sci. 1992 Nov;103(Pt 3):785–796. doi: 10.1242/jcs.103.3.785. [DOI] [PubMed] [Google Scholar]
- Brenner H. R., Witzemann V., Sakmann B. Imprinting of acetylcholine receptor messenger RNA accumulation in mammalian neuromuscular synapses. Nature. 1990 Apr 5;344(6266):544–547. doi: 10.1038/344544a0. [DOI] [PubMed] [Google Scholar]
- Cartaud J., Changeux J. P. Post-transcriptional compartmentalization of acetylcholine receptor biosynthesis in the subneural domain of muscle and electrocyte junctions. Eur J Neurosci. 1993 Mar 1;5(3):191–202. doi: 10.1111/j.1460-9568.1993.tb00485.x. [DOI] [PubMed] [Google Scholar]
- Changeux J. P. Compartmentalized transcription of acetylcholine receptor genes during motor endplate epigenesis. New Biol. 1991 May;3(5):413–429. [PubMed] [Google Scholar]
- Croul S., Mezitis S. G., Stieber A., Chen Y. J., Gonatas J. O., Goud B., Gonatas N. K. Immunocytochemical visualization of the Golgi apparatus in several species, including human, and tissues with an antiserum against MG-160, a sialoglycoprotein of rat Golgi apparatus. J Histochem Cytochem. 1990 Jul;38(7):957–963. doi: 10.1177/38.7.2355176. [DOI] [PubMed] [Google Scholar]
- Dubinsky J. M., Loftus D. J., Fischbach G. D., Elson E. L. Formation of acetylcholine receptor clusters in chick myotubes: migration or new insertion? J Cell Biol. 1989 Oct;109(4 Pt 1):1733–1743. doi: 10.1083/jcb.109.4.1733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duclert A., Changeux J. P. Acetylcholine receptor gene expression at the developing neuromuscular junction. Physiol Rev. 1995 Apr;75(2):339–368. doi: 10.1152/physrev.1995.75.2.339. [DOI] [PubMed] [Google Scholar]
- Enouf J., Lompré A. M., Bredoux R., Bourdeau N., de La Bastie D., Levy-Toledano S. Different sensitivity to trypsin of the human platelet plasma and intracellular membrane Ca2+ pumps. J Biol Chem. 1988 Sep 25;263(27):13922–13929. [PubMed] [Google Scholar]
- Fambrough D. M. Control of acetylcholine receptors in skeletal muscle. Physiol Rev. 1979 Jan;59(1):165–227. doi: 10.1152/physrev.1979.59.1.165. [DOI] [PubMed] [Google Scholar]
- Fontaine B., Changeux J. P. Localization of nicotinic acetylcholine receptor alpha-subunit transcripts during myogenesis and motor endplate development in the chick. J Cell Biol. 1989 Mar;108(3):1025–1037. doi: 10.1083/jcb.108.3.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman D., Carlson B. M., Staple J. Induction of adult-type nicotinic acetylcholine receptor gene expression in noninnervated regenerating muscle. Neuron. 1991 Oct;7(4):649–658. doi: 10.1016/0896-6273(91)90377-c. [DOI] [PubMed] [Google Scholar]
- Goud B., Zahraoui A., Tavitian A., Saraste J. Small GTP-binding protein associated with Golgi cisternae. Nature. 1990 Jun 7;345(6275):553–556. doi: 10.1038/345553a0. [DOI] [PubMed] [Google Scholar]
- Griffiths G., Ericsson M., Krijnse-Locker J., Nilsson T., Goud B., Söling H. D., Tang B. L., Wong S. H., Hong W. Localization of the Lys, Asp, Glu, Leu tetrapeptide receptor to the Golgi complex and the intermediate compartment in mammalian cells. J Cell Biol. 1994 Dec;127(6 Pt 1):1557–1574. doi: 10.1083/jcb.127.6.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths G., Hoflack B., Simons K., Mellman I., Kornfeld S. The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell. 1988 Feb 12;52(3):329–341. doi: 10.1016/s0092-8674(88)80026-6. [DOI] [PubMed] [Google Scholar]
- Hall Z. W., Sanes J. R. Synaptic structure and development: the neuromuscular junction. Cell. 1993 Jan;72 (Suppl):99–121. doi: 10.1016/s0092-8674(05)80031-5. [DOI] [PubMed] [Google Scholar]
- Hauri H. P., Schweizer A. The endoplasmic reticulum-Golgi intermediate compartment. Curr Opin Cell Biol. 1992 Aug;4(4):600–608. doi: 10.1016/0955-0674(92)90078-Q. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iglesias M., Ribera J., Esquerda J. E. Treatment with digestive agents reveals several glycoconjugates specifically associated with rat neuromuscular junction. Histochemistry. 1992;97(2):125–131. doi: 10.1007/BF00267302. [DOI] [PubMed] [Google Scholar]
- Jasmin B. J., Antony C., Changeux J. P., Cartaud J. Nerve-dependent plasticity of the Golgi complex in skeletal muscle fibres: compartmentalization within the subneural sarcoplasm. Eur J Neurosci. 1995 Mar 1;7(3):470–479. doi: 10.1111/j.1460-9568.1995.tb00343.x. [DOI] [PubMed] [Google Scholar]
- Jasmin B. J., Cartaud J., Bornens M., Changeux J. P. Golgi apparatus in chick skeletal muscle: changes in its distribution during end plate development and after denervation. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7218–7222. doi: 10.1073/pnas.86.18.7218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jasmin B. J., Changeux J. P., Cartaud J. Compartmentalization of cold-stable and acetylated microtubules in the subsynaptic domain of chick skeletal muscle fibre. Nature. 1990 Apr 12;344(6267):673–675. doi: 10.1038/344673a0. [DOI] [PubMed] [Google Scholar]
- Jasmin B. J., Lee R. K., Rotundo R. L. Compartmentalization of acetylcholinesterase mRNA and enzyme at the vertebrate neuromuscular junction. Neuron. 1993 Sep;11(3):467–477. doi: 10.1016/0896-6273(93)90151-g. [DOI] [PubMed] [Google Scholar]
- Kreis T. E. Role of microtubules in the organisation of the Golgi apparatus. Cell Motil Cytoskeleton. 1990;15(2):67–70. doi: 10.1002/cm.970150202. [DOI] [PubMed] [Google Scholar]
- Kronebusch P. J., Singer S. J. The microtubule-organizing complex and the Golgi apparatus are co-localized around the entire nuclear envelope of interphase cardiac myocytes. J Cell Sci. 1987 Aug;88(Pt 1):25–34. doi: 10.1242/jcs.88.1.25. [DOI] [PubMed] [Google Scholar]
- Luzio J. P., Brake B., Banting G., Howell K. E., Braghetta P., Stanley K. K. Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38). Biochem J. 1990 Aug 15;270(1):97–102. doi: 10.1042/bj2700097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merlie J. P., Sanes J. R. Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres. Nature. 1985 Sep 5;317(6032):66–68. doi: 10.1038/317066a0. [DOI] [PubMed] [Google Scholar]
- Michel R. N., Vu C. Q., Tetzlaff W., Jasmin B. J. Neural regulation of acetylcholinesterase mRNAs at mammalian neuromuscular synapses. J Cell Biol. 1994 Nov;127(4):1061–1069. doi: 10.1083/jcb.127.4.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller S. C., Pavlath G. K., Blakely B. T., Blau H. M. Muscle cell components dictate hepatocyte gene expression and the distribution of the Golgi apparatus in heterokaryons. Genes Dev. 1988 Mar;2(3):330–340. doi: 10.1101/gad.2.3.330. [DOI] [PubMed] [Google Scholar]
- Moremen K. W., Robbins P. W. Isolation, characterization, and expression of cDNAs encoding murine alpha-mannosidase II, a Golgi enzyme that controls conversion of high mannose to complex N-glycans. J Cell Biol. 1991 Dec;115(6):1521–1534. doi: 10.1083/jcb.115.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nomoto H., Takahashi N., Nagaki Y., Endo S., Arata Y., Hayashi K. Carbohydrate structures of acetylcholine receptor from Torpedo californica and distribution of oligosaccharides among the subunits. Eur J Biochem. 1986 Jun 2;157(2):233–242. doi: 10.1111/j.1432-1033.1986.tb09661.x. [DOI] [PubMed] [Google Scholar]
- Piette J., Huchet M., Duclert A., Fujisawa-Sehara A., Changeux J. P. Localization of mRNAs coding for CMD1, myogenin and the alpha-subunit of the acetylcholine receptor during skeletal muscle development in the chicken. Mech Dev. 1992 Mar;37(1-2):95–106. doi: 10.1016/0925-4773(92)90018-f. [DOI] [PubMed] [Google Scholar]
- Ralston E. Changes in architecture of the Golgi complex and other subcellular organelles during myogenesis. J Cell Biol. 1993 Jan;120(2):399–409. doi: 10.1083/jcb.120.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Role L. W., Matossian V. R., O'Brien R. J., Fischbach G. D. On the mechanism of acetylcholine receptor accumulation at newly formed synapses on chick myotubes. J Neurosci. 1985 Aug;5(8):2197–2204. doi: 10.1523/JNEUROSCI.05-08-02197.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salpeter M. M., Loring R. H. Nicotinic acetylcholine receptors in vertebrate muscle: properties, distribution and neural control. Prog Neurobiol. 1985;25(4):297–325. doi: 10.1016/0301-0082(85)90018-8. [DOI] [PubMed] [Google Scholar]
- Scott L. J., Bacou F., Sanes J. R. A synapse-specific carbohydrate at the neuromuscular junction: association with both acetylcholinesterase and a glycolipid. J Neurosci. 1988 Mar;8(3):932–944. doi: 10.1523/JNEUROSCI.08-03-00932.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott L. J., Balsamo J., Sanes J. R., Lilien J. Synaptic localization and neural regulation of an N-acetylgalactosaminyl transferase in skeletal muscle. J Neurosci. 1990 Jan;10(1):346–350. doi: 10.1523/JNEUROSCI.10-01-00346.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon A. M., Hoppe P., Burden S. J. Spatial restriction of AChR gene expression to subsynaptic nuclei. Development. 1992 Mar;114(3):545–553. doi: 10.1242/dev.114.3.545. [DOI] [PubMed] [Google Scholar]
- Strecker A., Franke P., Weise C., Hucho F. All potential glycosylation sites of the nicotinic acetylcholine receptor delta subunit from Torpedo californica are utilized. Eur J Biochem. 1994 Mar 15;220(3):1005–1011. doi: 10.1111/j.1432-1033.1994.tb18705.x. [DOI] [PubMed] [Google Scholar]
- Stya M., Axelrod D. Diffusely distributed acetylcholine receptors can participate in cluster formation on cultured rat myotubes. Proc Natl Acad Sci U S A. 1983 Jan;80(2):449–453. doi: 10.1073/pnas.80.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tassin A. M., Paintrand M., Berger E. G., Bornens M. The Golgi apparatus remains associated with microtubule organizing centers during myogenesis. J Cell Biol. 1985 Aug;101(2):630–638. doi: 10.1083/jcb.101.2.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogel F., Hartmann E., Görlich D., Rapoport T. A. Segregation of the signal sequence receptor protein in the rough endoplasmic reticulum membrane. Eur J Cell Biol. 1990 Dec;53(2):197–202. [PubMed] [Google Scholar]
- von Figura K., Hasilik A. Lysosomal enzymes and their receptors. Annu Rev Biochem. 1986;55:167–193. doi: 10.1146/annurev.bi.55.070186.001123. [DOI] [PubMed] [Google Scholar]
