Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Oct 2;131(2):495–508. doi: 10.1083/jcb.131.2.495

Chemokines regulate cellular polarization and adhesion receptor redistribution during lymphocyte interaction with endothelium and extracellular matrix. Involvement of cAMP signaling pathway

PMCID: PMC2199975  PMID: 7593174

Abstract

Leukocyte recruitment is a key step in the inflammatory reaction. Several changes in the cell morphology take place during lymphocyte activation and migration: spheric-shaped resting T cells become polarized during activation, developing a well defined cytoplasmic projection designated as cellular uropod. We found that the chemotactic and proinflammatory chemokines RANTES, MCP-1, and, to a lower extent, MIP-1 alpha, MIP-1 beta, and IL-8, were able to induce uropod formation and ICAM-3 redistribution in T lymphoblasts adhered to ICAM-1 or VCAM- 1. A similar chemokine-mediated effect was observed during T cells binding to the fibronectin fragments of 38- and 80-kD, that contain the binding sites for the integrins VLA-4 and VLA-5, respectively. The uropod structure concentrated the ICAM-3 adhesion molecule (a ligand for LFA-1), and emerged to the outer milieu from the area of contact between lymphocyte and protein ligands. In addition, we found that other adhesion molecules such as ICAM-1, CD43, and CD44, also redistributed to the lymphocyte uropod upon RANTES stimulation, whereas a wide number of other cell surface receptors did not redistribute. Chemokines displayed a selective effect among different T cell subsets; MIP-1 beta had more potent action on CD8+ T cells and tumor infiltrating lymphocytes (TIL), whereas RANTES and MIP-1 alpha targeted selectively CD4+ T cells. We have also examined the involvement of cAMP signaling pathway in uropod formation. Interestingly, several cAMP agonists were able to induce uropod formation and ICAM-3 redistribution, whereas H-89, a specific inhibitor of the cAMP- dependent protein kinase, abrogated the chemokine-mediated uropod formation, thus pointing out a role for cAMP-dependent signaling in the development of this cytoplasmic projection. Since the lymphocyte uropod induced by chemokines was completely abrogated by Bordetella pertussis toxin, the formation of this membrane projection appears to be dependent on G proteins signaling pathways. In addition, the involvement of myosin-based cytoskeleton in uropod formation and ICAM-3 redistribution in response to chemokines was suggested by the prevention of this phenomenon with the myosin-disrupting agent butanedione monoxime. Interestingly, this agent also inhibited the ICAM- 3-mediated cell aggregation, but not the cell adhesion to substrata. Altogether, these results demonstrate that uropod formation and adhesion receptor redistribution is a novel function mediated by chemokines; this phenomenon may represent a mechanism that significantly contributes to the recruitment of circulating leukocytes to inflammatory foci.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acevedo A., del Pozo M. A., Arroyo A. G., Sánchez-Mateos P., González-Amaro R., Sánchez-Madrid F. Distribution of ICAM-3-bearing cells in normal human tissues. Expression of a novel counter-receptor for LFA-1 in epidermal Langerhans cells. Am J Pathol. 1993 Sep;143(3):774–783. [PMC free article] [PubMed] [Google Scholar]
  2. Ardman B., Sikorski M. A., Staunton D. E. CD43 interferes with T-lymphocyte adhesion. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5001–5005. doi: 10.1073/pnas.89.11.5001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arroyo A. G., Campanero M. R., Sánchez-Mateos P., Zapata J. M., Ursa M. A., del Pozo M. A., Sánchez-Madrid F. Induction of tyrosine phosphorylation during ICAM-3 and LFA-1-mediated intercellular adhesion, and its regulation by the CD45 tyrosine phosphatase. J Cell Biol. 1994 Sep;126(5):1277–1286. doi: 10.1083/jcb.126.5.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arroyo A. G., Sánchez-Mateos P., Campanero M. R., Martín-Padura I., Dejana E., Sánchez-Madrid F. Regulation of the VLA integrin-ligand interactions through the beta 1 subunit. J Cell Biol. 1992 May;117(3):659–670. doi: 10.1083/jcb.117.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aruffo A., Stamenkovic I., Melnick M., Underhill C. B., Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990 Jun 29;61(7):1303–1313. doi: 10.1016/0092-8674(90)90694-a. [DOI] [PubMed] [Google Scholar]
  6. Bargatze R. F., Butcher E. C. Rapid G protein-regulated activation event involved in lymphocyte binding to high endothelial venules. J Exp Med. 1993 Jul 1;178(1):367–372. doi: 10.1084/jem.178.1.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bazil V. Physiological enzymatic cleavage of leukocyte membrane molecules. Immunol Today. 1995 Mar;16(3):135–140. doi: 10.1016/0167-5699(95)80130-8. [DOI] [PubMed] [Google Scholar]
  8. Butcher E. C. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell. 1991 Dec 20;67(6):1033–1036. doi: 10.1016/0092-8674(91)90279-8. [DOI] [PubMed] [Google Scholar]
  9. Campanero M. R., Pulido R., Alonso J. L., Pivel J. P., Pimentel-Muiños F. X., Fresno M., Sánchez-Madrid F. Down-regulation by tumor necrosis factor-alpha of neutrophil cell surface expression of the sialophorin CD43 and the hyaluronate receptor CD44 through a proteolytic mechanism. Eur J Immunol. 1991 Dec;21(12):3045–3048. doi: 10.1002/eji.1830211222. [DOI] [PubMed] [Google Scholar]
  10. Campanero M. R., Sánchez-Mateos P., del Pozo M. A., Sánchez-Madrid F. ICAM-3 regulates lymphocyte morphology and integrin-mediated T cell interaction with endothelial cell and extracellular matrix ligands. J Cell Biol. 1994 Nov;127(3):867–878. doi: 10.1083/jcb.127.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Campanero M. R., del Pozo M. A., Arroyo A. G., Sánchez-Mateos P., Hernández-Caselles T., Craig A., Pulido R., Sánchez-Madrid F. ICAM-3 interacts with LFA-1 and regulates the LFA-1/ICAM-1 cell adhesion pathway. J Cell Biol. 1993 Nov;123(4):1007–1016. doi: 10.1083/jcb.123.4.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Carpén O., Pallai P., Staunton D. E., Springer T. A. Association of intercellular adhesion molecule-1 (ICAM-1) with actin-containing cytoskeleton and alpha-actinin. J Cell Biol. 1992 Sep;118(5):1223–1234. doi: 10.1083/jcb.118.5.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Carr M. W., Roth S. J., Luther E., Rose S. S., Springer T. A. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3652–3656. doi: 10.1073/pnas.91.9.3652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Carrera A. C., Cárdenas L., Tugores A., Alonso M., Sánchez-Madrid F., de Landázuri M. O. Activators of protein kinase C up-regulate the cell surface expression of CD2 and CD5 T cell glycoproteins. J Biol Chem. 1989 Sep 15;264(26):15650–15655. [PubMed] [Google Scholar]
  15. Carrera A. C., Rincón M., De Landázuri M. O., López-Botet M. CD2 is involved in regulating cyclic AMP levels in T cells. Eur J Immunol. 1988 Jun;18(6):961–964. doi: 10.1002/eji.1830180620. [DOI] [PubMed] [Google Scholar]
  16. Chijiwa T., Mishima A., Hagiwara M., Sano M., Hayashi K., Inoue T., Naito K., Toshioka T., Hidaka H. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem. 1990 Mar 25;265(9):5267–5272. [PubMed] [Google Scholar]
  17. Dejana E., Colella S., Languino L. R., Balconi G., Corbascio G. C., Marchisio P. C. Fibrinogen induces adhesion, spreading, and microfilament organization of human endothelial cells in vitro. J Cell Biol. 1987 May;104(5):1403–1411. doi: 10.1083/jcb.104.5.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Detmers P. A., Wright S. D., Olsen E., Kimball B., Cohn Z. A. Aggregation of complement receptors on human neutrophils in the absence of ligand. J Cell Biol. 1987 Sep;105(3):1137–1145. doi: 10.1083/jcb.105.3.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dougherty G. J., Murdoch S., Hogg N. The function of human intercellular adhesion molecule-1 (ICAM-1) in the generation of an immune response. Eur J Immunol. 1988 Jan;18(1):35–39. doi: 10.1002/eji.1830180107. [DOI] [PubMed] [Google Scholar]
  20. Dustin M. L., Carpen O., Springer T. A. Regulation of locomotion and cell-cell contact area by the LFA-1 and ICAM-1 adhesion receptors. J Immunol. 1992 May 1;148(9):2654–2663. [PubMed] [Google Scholar]
  21. Fawcett J., Holness C. L., Needham L. A., Turley H., Gatter K. C., Mason D. Y., Simmons D. L. Molecular cloning of ICAM-3, a third ligand for LFA-1, constitutively expressed on resting leukocytes. Nature. 1992 Dec 3;360(6403):481–484. doi: 10.1038/360481a0. [DOI] [PubMed] [Google Scholar]
  22. Gilat D., Hershkoviz R., Mekori Y. A., Vlodavsky I., Lider O. Regulation of adhesion of CD4+ T lymphocytes to intact or heparinase-treated subendothelial extracellular matrix by diffusible or anchored RANTES and MIP-1 beta. J Immunol. 1994 Dec 1;153(11):4899–4906. [PubMed] [Google Scholar]
  23. Hahn W. C., Rosenstein Y., Burakoff S. J., Bierer B. E. Interaction of CD2 with its ligand lymphocyte function-associated antigen-3 induces adenosine 3',5'-cyclic monophosphate production in T lymphocytes. J Immunol. 1991 Jul 1;147(1):14–21. [PubMed] [Google Scholar]
  24. Hermanowski-Vosatka A., Detmers P. A., Götze O., Silverstein S. C., Wright S. D. Clustering of ligand on the surface of a particle enhances adhesion to receptor-bearing cells. J Biol Chem. 1988 Nov 25;263(33):17822–17827. [PubMed] [Google Scholar]
  25. Hernandez-Caselles T., Rubio G., Campanero M. R., del Pozo M. A., Muro M., Sanchez-Madrid F., Aparicio P. ICAM-3, the third LFA-1 counterreceptor, is a co-stimulatory molecule for both resting and activated T lymphocytes. Eur J Immunol. 1993 Nov;23(11):2799–2806. doi: 10.1002/eji.1830231112. [DOI] [PubMed] [Google Scholar]
  26. Huber A. R., Kunkel S. L., Todd R. F., 3rd, Weiss S. J. Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science. 1991 Oct 4;254(5028):99–102. doi: 10.1126/science.1718038. [DOI] [PubMed] [Google Scholar]
  27. Juan M., Viñas O., Pino-Otín M. R., Places L., Martínez-Cáceres E., Barceló J. J., Miralles A., Vilella R., de la Fuente M. A., Vives J. CD50 (intercellular adhesion molecule 3) stimulation induces calcium mobilization and tyrosine phosphorylation through p59fyn and p56lck in Jurkat T cell line. J Exp Med. 1994 Jun 1;179(6):1747–1756. doi: 10.1084/jem.179.6.1747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kammer G. M., Boehm C. A., Rudolph S. A., Schultz L. A. Mobility of the human T lymphocyte surface molecules CD3, CD4, and CD8: regulation by a cAMP-dependent pathway. Proc Natl Acad Sci U S A. 1988 Feb;85(3):792–796. doi: 10.1073/pnas.85.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kelner G. S., Kennedy J., Bacon K. B., Kleyensteuber S., Largaespada D. A., Jenkins N. A., Copeland N. G., Bazan J. F., Moore K. W., Schall T. J. Lymphotactin: a cytokine that represents a new class of chemokine. Science. 1994 Nov 25;266(5189):1395–1399. doi: 10.1126/science.7973732. [DOI] [PubMed] [Google Scholar]
  30. Koopman G., van Kooyk Y., de Graaff M., Meyer C. J., Figdor C. G., Pals S. T. Triggering of the CD44 antigen on T lymphocytes promotes T cell adhesion through the LFA-1 pathway. J Immunol. 1990 Dec 1;145(11):3589–3593. [PubMed] [Google Scholar]
  31. Kozawa O., Tokuda H., Miwa M., Kotoyori J., Oiso Y. Cross-talk regulation between cyclic AMP production and phosphoinositide hydrolysis induced by prostaglandin E2 in osteoblast-like cells. Exp Cell Res. 1992 Jan;198(1):130–134. doi: 10.1016/0014-4827(92)90158-5. [DOI] [PubMed] [Google Scholar]
  32. Lokeshwar V. B., Fregien N., Bourguignon L. Y. Ankyrin-binding domain of CD44(GP85) is required for the expression of hyaluronic acid-mediated adhesion function. J Cell Biol. 1994 Aug;126(4):1099–1109. doi: 10.1083/jcb.126.4.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Maghazachi A. A., al-Aoukaty A., Schall T. J. C-C chemokines induce the chemotaxis of NK and IL-2-activated NK cells. Role for G proteins. J Immunol. 1994 Dec 1;153(11):4969–4977. [PubMed] [Google Scholar]
  34. Manjunath N., Johnson R. S., Staunton D. E., Pasqualini R., Ardman B. Targeted disruption of CD43 gene enhances T lymphocyte adhesion. J Immunol. 1993 Aug 1;151(3):1528–1534. [PubMed] [Google Scholar]
  35. Mantel C., Aronica S., Luo Z., Marshall M. S., Kim Y. J., Cooper S., Hague N., Broxmeyer H. E. Macrophage inflammatory protein-1 alpha enhances growth factor-stimulated phosphatidylcholine metabolism and increases cAMP levels in the human growth factor-dependent cell line M07e, events associated with growth suppression. J Immunol. 1995 Mar 1;154(5):2342–2350. [PubMed] [Google Scholar]
  36. Miller M. D., Krangel M. S. Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines. Crit Rev Immunol. 1992;12(1-2):17–46. [PubMed] [Google Scholar]
  37. Murphy P. M. The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol. 1994;12:593–633. doi: 10.1146/annurev.iy.12.040194.003113. [DOI] [PubMed] [Google Scholar]
  38. Nong Y. H., Remold-O'Donnell E., LeBien T. W., Remold H. G. A monoclonal antibody to sialophorin (CD43) induces homotypic adhesion and activation of human monocytes. J Exp Med. 1989 Jul 1;170(1):259–267. doi: 10.1084/jem.170.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Oppenheim J. J., Zachariae C. O., Mukaida N., Matsushima K. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol. 1991;9:617–648. doi: 10.1146/annurev.iy.09.040191.003153. [DOI] [PubMed] [Google Scholar]
  40. Pian M. S., Dobbs L. G. Evidence for G beta gamma-mediated cross-talk in primary cultures of lung alveolar cells. Pertussis toxin-sensitive production of cAMP. J Biol Chem. 1995 Mar 31;270(13):7427–7430. doi: 10.1074/jbc.270.13.7427. [DOI] [PubMed] [Google Scholar]
  41. Picker L. J., Warnock R. A., Burns A. R., Doerschuk C. M., Berg E. L., Butcher E. C. The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell. 1991 Sep 6;66(5):921–933. doi: 10.1016/0092-8674(91)90438-5. [DOI] [PubMed] [Google Scholar]
  42. Pulido R., Cebrián M., Acevedo A., de Landázuri M. O., Sánchez-Madrid F. Comparative biochemical and tissue distribution study of four distinct CD45 antigen specificities. J Immunol. 1988 Jun 1;140(11):3851–3857. [PubMed] [Google Scholar]
  43. Pulido R., Elices M. J., Campanero M. R., Osborn L., Schiffer S., García-Pardo A., Lobb R., Hemler M. E., Sánchez-Madrid F. Functional evidence for three distinct and independently inhibitable adhesion activities mediated by the human integrin VLA-4. Correlation with distinct alpha 4 epitopes. J Biol Chem. 1991 Jun 5;266(16):10241–10245. [PubMed] [Google Scholar]
  44. Rosenman S. J., Ganji A. A., Tedder T. F., Gallatin W. M. Syn-capping of human T lymphocyte adhesion/activation molecules and their redistribution during interaction with endothelial cells. J Leukoc Biol. 1993 Jan;53(1):1–10. doi: 10.1002/jlb.53.1.1. [DOI] [PubMed] [Google Scholar]
  45. Rot A. Neutrophil attractant/activation protein-1 (interleukin-8) induces in vitro neutrophil migration by haptotactic mechanism. Eur J Immunol. 1993 Jan;23(1):303–306. doi: 10.1002/eji.1830230150. [DOI] [PubMed] [Google Scholar]
  46. Schall T. J., Bacon K. B. Chemokines, leukocyte trafficking, and inflammation. Curr Opin Immunol. 1994 Dec;6(6):865–873. doi: 10.1016/0952-7915(94)90006-x. [DOI] [PubMed] [Google Scholar]
  47. Schall T. J., Bacon K., Camp R. D., Kaspari J. W., Goeddel D. V. Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. J Exp Med. 1993 Jun 1;177(6):1821–1826. doi: 10.1084/jem.177.6.1821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schall T. J., Bacon K., Toy K. J., Goeddel D. V. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature. 1990 Oct 18;347(6294):669–671. doi: 10.1038/347669a0. [DOI] [PubMed] [Google Scholar]
  49. Schall T. J. Biology of the RANTES/SIS cytokine family. Cytokine. 1991 May;3(3):165–183. doi: 10.1016/1043-4666(91)90013-4. [DOI] [PubMed] [Google Scholar]
  50. Selden S. C., Pollard T. D. Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments. J Biol Chem. 1983 Jun 10;258(11):7064–7071. [PubMed] [Google Scholar]
  51. Spangrude G. J., Sacchi F., Hill H. R., Van Epps D. E., Daynes R. A. Inhibition of lymphocyte and neutrophil chemotaxis by pertussis toxin. J Immunol. 1985 Dec;135(6):4135–4143. [PubMed] [Google Scholar]
  52. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  53. Springer T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994 Jan 28;76(2):301–314. doi: 10.1016/0092-8674(94)90337-9. [DOI] [PubMed] [Google Scholar]
  54. Sánchez-Mateos P., Arroyo A. G., Balboa M. A., Sánchez-Madrid F. Post-receptor occupancy events in leukocytes during beta 1 integrin-ligand interactions. Eur J Immunol. 1993 Oct;23(10):2642–2648. doi: 10.1002/eji.1830231038. [DOI] [PubMed] [Google Scholar]
  55. Tanaka Y., Adams D. H., Hubscher S., Hirano H., Siebenlist U., Shaw S. T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1 beta. Nature. 1993 Jan 7;361(6407):79–82. doi: 10.1038/361079a0. [DOI] [PubMed] [Google Scholar]
  56. Tanaka Y., Adams D. H., Shaw S. Proteoglycans on endothelial cells present adhesion-inducing cytokines to leukocytes. Immunol Today. 1993 Mar;14(3):111–115. doi: 10.1016/0167-5699(93)90209-4. [DOI] [PubMed] [Google Scholar]
  57. Tanaka Y., Adams D. H., Shaw S. Regulation of leukocyte recruitment by proadhesive cytokines immobilized on endothelial proteoglycan. Curr Top Microbiol Immunol. 1993;184:99–106. doi: 10.1007/978-3-642-78253-4_8. [DOI] [PubMed] [Google Scholar]
  58. Taub D. D., Conlon K., Lloyd A. R., Oppenheim J. J., Kelvin D. J. Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1 alpha and MIP-1 beta. Science. 1993 Apr 16;260(5106):355–358. doi: 10.1126/science.7682337. [DOI] [PubMed] [Google Scholar]
  59. Taub D. D., Lloyd A. R., Conlon K., Wang J. M., Ortaldo J. R., Harada A., Matsushima K., Kelvin D. J., Oppenheim J. J. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J Exp Med. 1993 Jun 1;177(6):1809–1814. doi: 10.1084/jem.177.6.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Toullec D., Pianetti P., Coste H., Bellevergue P., Grand-Perret T., Ajakane M., Baudet V., Boissin P., Boursier E., Loriolle F. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991 Aug 25;266(24):15771–15781. [PubMed] [Google Scholar]
  61. Tsukita S., Oishi K., Sato N., Sagara J., Kawai A., Tsukita S. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol. 1994 Jul;126(2):391–401. doi: 10.1083/jcb.126.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Vartdal F., Kvalheim G., Lea T. E., Bosnes V., Gaudernack G., Ugelstad J., Albrechtsen D. Depletion of T lymphocytes from human bone marrow. Use of magnetic monosized polymer microspheres coated with T-lymphocyte-specific monoclonal antibodies. Transplantation. 1987 Mar;43(3):366–371. [PubMed] [Google Scholar]
  63. Vazeux R., Hoffman P. A., Tomita J. K., Dickinson E. S., Jasman R. L., St John T., Gallatin W. M. Cloning and characterization of a new intercellular adhesion molecule ICAM-R. Nature. 1992 Dec 3;360(6403):485–488. doi: 10.1038/360485a0. [DOI] [PubMed] [Google Scholar]
  64. Wilkinson P. C., Higgins A. OKT3-activated locomotion of human blood lymphocytes: a phenomenon requiring contact of T cells with Fc receptor-bearing cells. Immunology. 1987 Mar;60(3):445–451. [PMC free article] [PubMed] [Google Scholar]
  65. Wu D., LaRosa G. J., Simon M. I. G protein-coupled signal transduction pathways for interleukin-8. Science. 1993 Jul 2;261(5117):101–103. doi: 10.1126/science.8316840. [DOI] [PubMed] [Google Scholar]
  66. Yonemura S., Nagafuchi A., Sato N., Tsukita S. Concentration of an integral membrane protein, CD43 (leukosialin, sialophorin), in the cleavage furrow through the interaction of its cytoplasmic domain with actin-based cytoskeletons. J Cell Biol. 1993 Jan;120(2):437–449. doi: 10.1083/jcb.120.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Zong Z. P., Fujikawa-Yamamoto K., Teraoka K., Yamagishi H., Tanino M., Odashima S. Potentiation of K252a, a protein kinase inhibitor-induced polyploidization by cAMP in cultured fibrosarcoma cell line. Biochem Biophys Res Commun. 1994 Nov 30;205(1):746–750. doi: 10.1006/bbrc.1994.2728. [DOI] [PubMed] [Google Scholar]
  68. de Fougerolles A. R., Klickstein L. B., Springer T. A. Cloning and expression of intercellular adhesion molecule 3 reveals strong homology to other immunoglobulin family counter-receptors for lymphocyte function-associated antigen 1. J Exp Med. 1993 Apr 1;177(4):1187–1192. doi: 10.1084/jem.177.4.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. de Fougerolles A. R., Qin X., Springer T. A. Characterization of the function of intercellular adhesion molecule (ICAM)-3 and comparison with ICAM-1 and ICAM-2 in immune responses. J Exp Med. 1994 Feb 1;179(2):619–629. doi: 10.1084/jem.179.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. de Fougerolles A. R., Springer T. A. Intercellular adhesion molecule 3, a third adhesion counter-receptor for lymphocyte function-associated molecule 1 on resting lymphocytes. J Exp Med. 1992 Jan 1;175(1):185–190. doi: 10.1084/jem.175.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. del Pozo M. A., Pulido R., Muñoz C., Alvarez V., Humbría A., Campanero M. R., Sánchez-Madrid F. Regulation of ICAM-3 (CD50) membrane expression on human neutrophils through a proteolytic shedding mechanism. Eur J Immunol. 1994 Nov;24(11):2586–2594. doi: 10.1002/eji.1830241104. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES