Abstract
Collagen VII is the major structural constituent of anchoring fibrils in the skin. It is synthesized as a procollagen that is larger than the collagen deposited in the tissue. In this study, we investigated the conversion of procollagen VII to collagen VII in human skin and in cutaneous cells in vitro and identified the propeptide using domain- specific antibodies. For this purpose, two bacterial fusion proteins containing unique sequences of the carboxy-terminal globular NC-2 domain of procollagen VII were prepared, and polyclonal antibodies raised against them. Immunoblotting showed that the anti-NC2 antibodies reacted with procollagen VII isolated from cultured keratinocytes, but not with collagen VII extracted from the skin. Immunohistochemical experiments with the NC-2 antibodies revealed a strong reaction in cultured keratinocytes, but the basement membrane zone of normal skin remained negative. The staining could not be rendered positive by chemical or enzymatic unmasking of potential hidden epitopes in the skin, indicating that most of the NC-2 domain is absent from normal skin. In contrast, a positive staining with NC-2 antibodies was observed in the skin of a patient with NC-2 antibodies was observed in the skin of a patient with dystrophic epidermolysis bullosa, who carried a 14-bp deletion at one of the intro-exon junctions of the collagen VII gene. This aberration led to an in-frame skipping of exon 115 from the mRNA and eliminated 29 amino acids from the NC-2 domain which include the putative cleavage site for the physiological processing enzyme, procollagen C-proteinase. The results indicate that in normal human skin, the removal of the NC-2 domain from procollagen VII precedes its deposition at the dermal-epidermal junction. Furthermore, they suggest that an aberration in the procollagen VII cleavage interferes with the normal fibrillogenesis of the anchoring fibrils.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bateman J. F., Golub S. B. Assessment of procollagen processing defects by fibroblasts cultured in the presence of dextran sulphate. Biochem J. 1990 May 1;267(3):573–577. doi: 10.1042/bj2670573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruckner-Tuderman L., Schnyder U. W., Winterhalter K. H., Bruckner P. Tissue form of type VII collagen from human skin and dermal fibroblasts in culture. Eur J Biochem. 1987 Jun 15;165(3):607–611. doi: 10.1111/j.1432-1033.1987.tb11483.x. [DOI] [PubMed] [Google Scholar]
- Burgeson R. E. Type VII collagen, anchoring fibrils, and epidermolysis bullosa. J Invest Dermatol. 1993 Sep;101(3):252–255. doi: 10.1111/1523-1747.ep12365129. [DOI] [PubMed] [Google Scholar]
- Christiano A. M., Greenspan D. S., Hoffman G. G., Zhang X., Tamai Y., Lin A. N., Dietz H. C., Hovnanian A., Uitto J. A missense mutation in type VII collagen in two affected siblings with recessive dystrophic epidermolysis bullosa. Nat Genet. 1993 May;4(1):62–66. doi: 10.1038/ng0593-62. [DOI] [PubMed] [Google Scholar]
- Christiano A. M., Greenspan D. S., Lee S., Uitto J. Cloning of human type VII collagen. Complete primary sequence of the alpha 1(VII) chain and identification of intragenic polymorphisms. J Biol Chem. 1994 Aug 12;269(32):20256–20262. [PubMed] [Google Scholar]
- Christiano A. M., Hoffman G. G., Chung-Honet L. C., Lee S., Cheng W., Uitto J., Greenspan D. S. Structural organization of the human type VII collagen gene (COL7A1), composed of more exons than any previously characterized gene. Genomics. 1994 May 1;21(1):169–179. doi: 10.1006/geno.1994.1239. [DOI] [PubMed] [Google Scholar]
- Gammon W. R., Briggaman R. A., Inman A. O., 3rd, Queen L. L., Wheeler C. E. Differentiating anti-lamina lucida and anti-sublamina densa anti-BMZ antibodies by indirect immunofluorescence on 1.0 M sodium chloride-separated skin. J Invest Dermatol. 1984 Feb;82(2):139–144. doi: 10.1111/1523-1747.ep12259692. [DOI] [PubMed] [Google Scholar]
- Greenspan D. S. The carboxyl-terminal half of type VII collagen, including the non-collagenous NC-2 domain and intron/exon organization of the corresponding region of the COL7A1 gene. Hum Mol Genet. 1993 Mar;2(3):273–278. doi: 10.1093/hmg/2.3.273. [DOI] [PubMed] [Google Scholar]
- Hilal L., Rochat A., Duquesnoy P., Blanchet-Bardon C., Wechsler J., Martin N., Christiano A. M., Barrandon Y., Uitto J., Goossens M. A homozygous insertion-deletion in the type VII collagen gene (COL7A1) in Hallopeau-Siemens dystrophic epidermolysis bullosa. Nat Genet. 1993 Nov;5(3):287–293. doi: 10.1038/ng1193-287. [DOI] [PubMed] [Google Scholar]
- Hojima Y., van der Rest M., Prockop D. J. Type I procollagen carboxyl-terminal proteinase from chick embryo tendons. Purification and characterization. J Biol Chem. 1985 Dec 15;260(29):15996–16003. [PubMed] [Google Scholar]
- Kessler E., Adar R. Type I procollagen C-proteinase from mouse fibroblasts. Purification and demonstration of a 55-kDa enhancer glycoprotein. Eur J Biochem. 1989 Dec 8;186(1-2):115–121. doi: 10.1111/j.1432-1033.1989.tb15184.x. [DOI] [PubMed] [Google Scholar]
- Kivirikko K. I. Collagens and their abnormalities in a wide spectrum of diseases. Ann Med. 1993 Apr;25(2):113–126. doi: 10.3109/07853899309164153. [DOI] [PubMed] [Google Scholar]
- Kleinschmidt J. A., Dingwall C., Maier G., Franke W. W. Molecular characterization of a karyophilic, histone-binding protein: cDNA cloning, amino acid sequence and expression of nuclear protein N1/N2 of Xenopus laevis. EMBO J. 1986 Dec 20;5(13):3547–3552. doi: 10.1002/j.1460-2075.1986.tb04681.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- König A., Bruckner-Tuderman L. Transforming growth factor-beta promotes deposition of collagen VII in a modified organotypic skin model. Lab Invest. 1994 Feb;70(2):203–209. [PubMed] [Google Scholar]
- König A., Bruckner-Tuderman L. Transforming growth factor-beta stimulates collagen VII expression by cutaneous cells in vitro. J Cell Biol. 1992 May;117(3):679–685. doi: 10.1083/jcb.117.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lunstrum G. P., Kuo H. J., Rosenbaum L. M., Keene D. R., Glanville R. W., Sakai L. Y., Burgeson R. E. Anchoring fibrils contain the carboxyl-terminal globular domain of type VII procollagen, but lack the amino-terminal globular domain. J Biol Chem. 1987 Oct 5;262(28):13706–13712. [PubMed] [Google Scholar]
- Lunstrum G. P., Sakai L. Y., Keene D. R., Morris N. P., Burgeson R. E. Large complex globular domains of type VII procollagen contribute to the structure of anchoring fibrils. J Biol Chem. 1986 Jul 5;261(19):9042–9048. [PubMed] [Google Scholar]
- Marinkovich M. P., Lunstrum G. P., Burgeson R. E. The anchoring filament protein kalinin is synthesized and secreted as a high molecular weight precursor. J Biol Chem. 1992 Sep 5;267(25):17900–17906. [PubMed] [Google Scholar]
- Mayer U., Pöschl E., Nischt R., Specks U., Pan T. C., Chu M. L., Timpl R. Recombinant expression and properties of the Kunitz-type protease-inhibitor module from human type VI collagen alpha 3(VI) chain. Eur J Biochem. 1994 Oct 15;225(2):573–580. doi: 10.1111/j.1432-1033.1994.00573.x. [DOI] [PubMed] [Google Scholar]
- Prockop D. J., Tuderman L. Posttranslational enzymes in the biosynthesis of collagen: extracellular enzymes. Methods Enzymol. 1982;82(Pt A):305–319. doi: 10.1016/0076-6879(82)82068-5. [DOI] [PubMed] [Google Scholar]
- Raghunath M., Kielty C. M., Steinmann B. Truncated profibrillin of a Marfan patient is of apparent similar size as fibrillin: intracellular retention leads to over-N-glycosylation. J Mol Biol. 1995 May 19;248(5):901–909. doi: 10.1006/jmbi.1995.0270. [DOI] [PubMed] [Google Scholar]
- Regauer S., Seiler G. R., Barrandon Y., Easley K. W., Compton C. C. Epithelial origin of cutaneous anchoring fibrils. J Cell Biol. 1990 Nov;111(5 Pt 1):2109–2115. doi: 10.1083/jcb.111.5.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakai L. Y., Keene D. R., Morris N. P., Burgeson R. E. Type VII collagen is a major structural component of anchoring fibrils. J Cell Biol. 1986 Oct;103(4):1577–1586. doi: 10.1083/jcb.103.4.1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uitto J., Pulkkinen L., Christiano A. M. Molecular basis of the dystrophic and junctional forms of epidermolysis bullosa: mutations in the type VII collagen and kalinin (laminin 5) genes. J Invest Dermatol. 1994 Nov;103(5 Suppl):39S–46S. doi: 10.1111/1523-1747.ep12398967. [DOI] [PubMed] [Google Scholar]
- Zimmermann D. R., Dours-Zimmermann M. T., Schubert M., Bruckner-Tuderman L. Versican is expressed in the proliferating zone in the epidermis and in association with the elastic network of the dermis. J Cell Biol. 1994 Mar;124(5):817–825. doi: 10.1083/jcb.124.5.817. [DOI] [PMC free article] [PubMed] [Google Scholar]