Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Oct 2;131(2):509–524. doi: 10.1083/jcb.131.2.509

Detachment of cultured cells from the substratum induced by the neutrophil-derived oxidant NH2Cl: synergistic role of phosphotyrosine and intracellular Ca2+ concentration

PMCID: PMC2199986  PMID: 7593175

Abstract

The neutrophil-derived, membrane-permeating oxidant, NH2Cl, (but not the non-membrane-permeating chloramine, taurine-NHCl) induced detachment of fetal mouse cardiac myocytes and other cell types (fibroblasts, epithelial cells, and endothelial cells) from the culture dish, concomitant with cell shrinkage ("peeling off"). Stimulated human neutrophils also induced peeling off of cultured mouse cardiac myocytes when the latter were pretreated with inhibitors of .OH and elastase. Immunofluorescence microscopy revealed that the NH2Cl-induced peeling off of WI-38 fibroblasts is accompanied by disorganization of integrin alpha 5 beta 1, vinculin, stress fibers, and phosphotyrosine (p-Tyr)- containing proteins. Decrease in the content of the p-Tyr-containing proteins of the NH2Cl-treated cells was analyzed by immunoblotting techniques. Coating of fibronectin on the culture dish prevented both NH2Cl-induced peeling off and a decrease in p-Tyr content. Preincubation with a protein-tyrosine phosphatase inhibitor, sodium orthovanadate (Na3VO4), also prevented NH2Cl-induced peeling off, suggesting that dephosphorylation of p-Tyr is necessary for peeling off. NH2Cl-induced peeling off was accompanied by an increase in intracellular Ca2+ concentration ([Ca2+]i) in mouse cardiac myocytes and WI-38 fibroblasts. The absence of extracellular Ca2+ prevented both NH2Cl-induced peeling off and increased [Ca2+]i, both of which did occur on subsequent incubation of the cells in Ca2+-containing medium. These observations suggest that an increase in [Ca2+]i is also necessary for peeling off. Depletion of microsomal and cytosolic Ca2+ by incubation with the microsomal Ca2+-ATPase inhibitor 2',5'-di(tert- butyl)-1,4-benzohydroquinone (BHQ) plus EGTA prevented both NH2Cl- induced increases in [Ca2+]i and peeling off. Direct inhibition of microsomal Ca2+ pump activity by NH2Cl may participate in the NH2Cl- induced [Ca2+]i increment. A combination of p-Tyr dephosphorylation by genistein (an inhibitor of tyrosine kinase) and an increase in [Ca2+]i by BHQ could also induce peeling off. All these observations suggest a synergism between p-Tyr dephosphorylation and increased [Ca2+]i in NH2Cl-induced peeling off.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahumada G. G., Saffitz J. E. Fibronectin in rat heart: a link between cardiac myocytes and collagen. J Histochem Cytochem. 1984 Apr;32(4):383–388. doi: 10.1177/32.4.6707462. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  3. Burridge K., Fath K., Kelly T., Nuckolls G., Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol. 1988;4:487–525. doi: 10.1146/annurev.cb.04.110188.002415. [DOI] [PubMed] [Google Scholar]
  4. Burridge K., Feramisco J. R. Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin. Cell. 1980 Mar;19(3):587–595. doi: 10.1016/s0092-8674(80)80035-3. [DOI] [PubMed] [Google Scholar]
  5. Burridge K., Turner C. E., Romer L. H. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol. 1992 Nov;119(4):893–903. doi: 10.1083/jcb.119.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Contard F., Koteliansky V., Marotte F., Dubus I., Rappaport L., Samuel J. L. Specific alterations in the distribution of extracellular matrix components within rat myocardium during the development of pressure overload. Lab Invest. 1991 Jan;64(1):65–75. [PubMed] [Google Scholar]
  7. Duband J. L., Nuckolls G. H., Ishihara A., Hasegawa T., Yamada K. M., Thiery J. P., Jacobson K. Fibronectin receptor exhibits high lateral mobility in embryonic locomoting cells but is immobile in focal contacts and fibrillar streaks in stationary cells. J Cell Biol. 1988 Oct;107(4):1385–1396. doi: 10.1083/jcb.107.4.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Engler R. L., Schmid-Schönbein G. W., Pavelec R. S. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol. 1983 Apr;111(1):98–111. [PMC free article] [PubMed] [Google Scholar]
  9. Fox R. B. Prevention of granulocyte-mediated oxidant lung injury in rats by a hydroxyl radical scavenger, dimethylthiourea. J Clin Invest. 1984 Oct;74(4):1456–1464. doi: 10.1172/JCI111558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garcia M. L., Slaughter R. S., King V. F., Kaczorowski G. J. Inhibition of sodium-calcium exchange in cardiac sarcolemmal membrane vesicles. 2. Mechanism of inhibition by bepridil. Biochemistry. 1988 Apr 5;27(7):2410–2415. doi: 10.1021/bi00407a024. [DOI] [PubMed] [Google Scholar]
  11. Geiger B. A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell. 1979 Sep;18(1):193–205. doi: 10.1016/0092-8674(79)90368-4. [DOI] [PubMed] [Google Scholar]
  12. Grisham M. B., Gaginella T. S., von Ritter C., Tamai H., Be R. M., Granger D. N. Effects of neutrophil-derived oxidants on intestinal permeability, electrolyte transport, and epithelial cell viability. Inflammation. 1990 Oct;14(5):531–542. doi: 10.1007/BF00914274. [DOI] [PubMed] [Google Scholar]
  13. Guan J. L., Shalloway D. Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature. 1992 Aug 20;358(6388):690–692. doi: 10.1038/358690a0. [DOI] [PubMed] [Google Scholar]
  14. Guan J. L., Trevithick J. E., Hynes R. O. Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120-kDa protein. Cell Regul. 1991 Nov;2(11):951–964. doi: 10.1091/mbc.2.11.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hanks S. K., Calalb M. B., Harper M. C., Patel S. K. Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8487–8491. doi: 10.1073/pnas.89.18.8487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hansen C. A., Schroering A. G., Carey D. J., Robishaw J. D. Localization of a heterotrimeric G protein gamma subunit to focal adhesions and associated stress fibers. J Cell Biol. 1994 Aug;126(3):811–819. doi: 10.1083/jcb.126.3.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Henson P. M., Johnston R. B., Jr Tissue injury in inflammation. Oxidants, proteinases, and cationic proteins. J Clin Invest. 1987 Mar;79(3):669–674. doi: 10.1172/JCI112869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  19. Johnson R. J., Couser W. G., Chi E. Y., Adler S., Klebanoff S. J. New mechanism for glomerular injury. Myeloperoxidase-hydrogen peroxide-halide system. J Clin Invest. 1987 May;79(5):1379–1387. doi: 10.1172/JCI112965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Johnson R. J., Guggenheim S. J., Klebanoff S. J., Ochi R. F., Wass A., Baker P., Schulze M., Couser W. G. Morphologic correlates of glomerular oxidant injury induced by the myeloperoxidase-hydrogen peroxide-halide system of the neutrophil. Lab Invest. 1988 Mar;58(3):294–301. [PubMed] [Google Scholar]
  21. Juliano R. L., Haskill S. Signal transduction from the extracellular matrix. J Cell Biol. 1993 Feb;120(3):577–585. doi: 10.1083/jcb.120.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kao J. P., Harootunian A. T., Tsien R. Y. Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem. 1989 May 15;264(14):8179–8184. [PubMed] [Google Scholar]
  23. Kass G. E., Duddy S. K., Moore G. A., Orrenius S. 2,5-Di-(tert-butyl)-1,4-benzohydroquinone rapidly elevates cytosolic Ca2+ concentration by mobilizing the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. J Biol Chem. 1989 Sep 15;264(26):15192–15198. [PubMed] [Google Scholar]
  24. Katayama H., Hase T., Yaoita H. Detachment of cultured normal human keratinocytes by contact with TNF alpha-stimulated neutrophils in the presence of platelet-activating factor. J Invest Dermatol. 1994 Aug;103(2):187–190. doi: 10.1111/1523-1747.ep12392711. [DOI] [PubMed] [Google Scholar]
  25. Katayama H., Kitagawa S., Masuyama J., Yaoita H. Polymorphonuclear leukocyte-induced detachment of cultured epidermal carcinoma cells from the substratum. J Invest Dermatol. 1991 Nov;97(5):949–952. doi: 10.1111/1523-1747.ep12491818. [DOI] [PubMed] [Google Scholar]
  26. Kornberg L., Earp H. S., Parsons J. T., Schaller M., Juliano R. L. Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J Biol Chem. 1992 Nov 25;267(33):23439–23442. [PubMed] [Google Scholar]
  27. Koroma B. M., de Juan E., Jr Phosphotyrosine inhibition and control of vascular endothelial cell proliferation by genistein. Biochem Pharmacol. 1994 Aug 17;48(4):809–818. doi: 10.1016/0006-2952(94)90060-4. [DOI] [PubMed] [Google Scholar]
  28. Kuzuya T., Fuji H., Hoshida S., Nishida M., Goshima K., Hori M., Kamada T., Tada M. Polymorphonuclear leukocytes-induced injury in hypoxic cardiac myocytes. Free Radic Biol Med. 1994 Dec;17(6):501–510. doi: 10.1016/0891-5849(94)90089-2. [DOI] [PubMed] [Google Scholar]
  29. Lipfert L., Haimovich B., Schaller M. D., Cobb B. S., Parsons J. T., Brugge J. S. Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets. J Cell Biol. 1992 Nov;119(4):905–912. doi: 10.1083/jcb.119.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lundgren E., Gullberg D., Rubin K., Borg T. K., Terracio M. J., Terracio L. In vitro studies on adult cardiac myocytes: attachment and biosynthesis of collagen type IV and laminin. J Cell Physiol. 1988 Jul;136(1):43–53. doi: 10.1002/jcp.1041360106. [DOI] [PubMed] [Google Scholar]
  31. MARUYAMA K. A FLOW BIREFRINGENCE STUDY OF F-ACTIN. J Biochem. 1964 Mar;55:277–286. doi: 10.1093/oxfordjournals.jbchem.a127881. [DOI] [PubMed] [Google Scholar]
  32. MOMMAERTS W. F. H. M. Reversible polymerization and ultracentrifugal purification of actin. J Biol Chem. 1951 Feb;188(2):559–565. [PubMed] [Google Scholar]
  33. Maher P. A. Activation of phosphotyrosine phosphatase activity by reduction of cell-substrate adhesion. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11177–11181. doi: 10.1073/pnas.90.23.11177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Martin G. R., Timpl R. Laminin and other basement membrane components. Annu Rev Cell Biol. 1987;3:57–85. doi: 10.1146/annurev.cb.03.110187.000421. [DOI] [PubMed] [Google Scholar]
  35. Meissner G., Henderson J. S. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem. 1987 Mar 5;262(7):3065–3073. [PubMed] [Google Scholar]
  36. Mullane K. M., Read N., Salmon J. A., Moncada S. Role of leukocytes in acute myocardial infarction in anesthetized dogs: relationship to myocardial salvage by anti-inflammatory drugs. J Pharmacol Exp Ther. 1984 Feb;228(2):510–522. [PubMed] [Google Scholar]
  37. Nakamura T. Y., Goda K., Okamoto T., Kishi T., Nakamura T., Goshima K. Contractile and morphological impairment of cultured fetal mouse myocytes induced by oxygen radicals and oxidants. Correlation with intracellular Ca2+ concentration. Circ Res. 1993 Oct;73(4):758–770. doi: 10.1161/01.res.73.4.758. [DOI] [PubMed] [Google Scholar]
  38. Nakamura T. Y., Yamamoto I., Kanno Y., Shiba Y., Goshima K. Metabolic coupling of glutathione between mouse and quail cardiac myocytes and its protective role against oxidative stress. Circ Res. 1994 May;74(5):806–816. doi: 10.1161/01.res.74.5.806. [DOI] [PubMed] [Google Scholar]
  39. Peters J. H., Ginsberg M. H., Bohl B. P., Sklar L. A., Cochrane C. G. Intravascular release of intact cellular fibronectin during oxidant-induced injury of the in vitro perfused rabbit lung. J Clin Invest. 1986 Dec;78(6):1596–1603. doi: 10.1172/JCI112752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rohrschneider L. R. Adhesion plaques of Rous sarcoma virus-transformed cells contain the src gene product. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3514–3518. doi: 10.1073/pnas.77.6.3514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Romson J. L., Hook B. G., Kunkel S. L., Abrams G. D., Schork M. A., Lucchesi B. R. Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation. 1983 May;67(5):1016–1023. doi: 10.1161/01.cir.67.5.1016. [DOI] [PubMed] [Google Scholar]
  42. Samuels M., Ezzell R. M., Cardozo T. J., Critchley D. R., Coll J. L., Adamson E. D. Expression of chicken vinculin complements the adhesion-defective phenotype of a mutant mouse F9 embryonal carcinoma cell. J Cell Biol. 1993 May;121(4):909–921. doi: 10.1083/jcb.121.4.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schaller M. D., Borgman C. A., Cobb B. S., Vines R. R., Reynolds A. B., Parsons J. T. pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5192–5196. doi: 10.1073/pnas.89.11.5192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schwartz M. A. Spreading of human endothelial cells on fibronectin or vitronectin triggers elevation of intracellular free calcium. J Cell Biol. 1993 Feb;120(4):1003–1010. doi: 10.1083/jcb.120.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shigekawa M., Wakabayashi S., Nakamura H. Reaction mechanism of Ca2+-dependent adenosine triphosphatase of sarcoplasmic reticulum. ATP hydrolysis with CaATP as a substrate and role of divalent cation. J Biol Chem. 1983 Jul 25;258(14):8698–8707. [PubMed] [Google Scholar]
  46. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  47. Streuli M., Krueger N. X., Thai T., Tang M., Saito H. Distinct functional roles of the two intracellular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR. EMBO J. 1990 Aug;9(8):2399–2407. doi: 10.1002/j.1460-2075.1990.tb07415.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tamai H., Gaginella T. S., Kachur J. F., Musch M. W., Chang E. B. Ca-mediated stimulation of Cl secretion by reactive oxygen metabolites in human colonic T84 cells. J Clin Invest. 1992 Jan;89(1):301–307. doi: 10.1172/JCI115576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tamai H., Kachur J. F., Grisham M. B., Musch M. W., Chang E. B., Gaginella T. S. Effect of the thiol-oxidizing agent diamide on NH2Cl-induced rat colonic electrolyte secretion. Am J Physiol. 1993 Jul;265(1 Pt 1):C166–C170. doi: 10.1152/ajpcell.1993.265.1.C166. [DOI] [PubMed] [Google Scholar]
  50. Tatsumi T., Fliss H. Hypochlorous acid and chloramines increase endothelial permeability: possible involvement of cellular zinc. Am J Physiol. 1994 Oct;267(4 Pt 2):H1597–H1607. doi: 10.1152/ajpheart.1994.267.4.H1597. [DOI] [PubMed] [Google Scholar]
  51. Thomas E. L., Grisham M. B., Jefferson M. M. Myeloperoxidase-dependent effect of amines on functions of isolated neutrophils. J Clin Invest. 1983 Aug;72(2):441–454. doi: 10.1172/JCI110992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Uchida T., Matozaki T., Matsuda K., Suzuki T., Matozaki S., Nakano O., Wada K., Konda Y., Sakamoto C., Kasuga M. Phorbol ester stimulates the activity of a protein tyrosine phosphatase containing SH2 domains (PTP1C) in HL-60 leukemia cells by increasing gene expression. J Biol Chem. 1993 Jun 5;268(16):11845–11850. [PubMed] [Google Scholar]
  53. Uehara Y., Fukazawa H., Murakami Y., Mizuno S. Irreversible inhibition of v-src tyrosine kinase activity by herbimycin A and its abrogation by sulfhydryl compounds. Biochem Biophys Res Commun. 1989 Sep 15;163(2):803–809. doi: 10.1016/0006-291x(89)92293-6. [DOI] [PubMed] [Google Scholar]
  54. Vasiliev J. M. Spreading of non-transformed and transformed cells. Biochim Biophys Acta. 1985;780(1):21–65. doi: 10.1016/0304-419x(84)90006-4. [DOI] [PubMed] [Google Scholar]
  55. Vigne P., Frelin C., Cragoe E. J., Jr, Lazdunski M. Structure-activity relationships of amiloride and certain of its analogues in relation to the blockade of the Na+/H+ exchange system. Mol Pharmacol. 1984 Jan;25(1):131–136. [PubMed] [Google Scholar]
  56. Vissers M. C., Winterbourn C. C. Oxidative damage to fibronectin. I. The effects of the neutrophil myeloperoxidase system and HOCl. Arch Biochem Biophys. 1991 Feb 15;285(1):53–59. doi: 10.1016/0003-9861(91)90327-f. [DOI] [PubMed] [Google Scholar]
  57. Ward P. A., Till G. O., Kunkel R., Beauchamp C. Evidence for role of hydroxyl radical in complement and neutrophil-dependent tissue injury. J Clin Invest. 1983 Sep;72(3):789–801. doi: 10.1172/JCI111050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Woods A., Couchman J. R. Protein kinase C involvement in focal adhesion formation. J Cell Sci. 1992 Feb;101(Pt 2):277–290. doi: 10.1242/jcs.101.2.277. [DOI] [PubMed] [Google Scholar]
  59. Zellner J. L., Spinale F. G., Eble D. M., Hewett K. W., Crawford F. A., Jr Alterations in myocyte shape and basement membrane attachment with tachycardia-induced heart failure. Circ Res. 1991 Sep;69(3):590–600. doi: 10.1161/01.res.69.3.590. [DOI] [PubMed] [Google Scholar]
  60. Zhao Y., Sudol M., Hanafusa H., Krueger J. Increased tyrosine kinase activity of c-Src during calcium-induced keratinocyte differentiation. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8298–8302. doi: 10.1073/pnas.89.17.8298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Zhao Y., Uyttendaele H., Krueger J. G., Sudol M., Hanafusa H. Inactivation of c-Yes tyrosine kinase by elevation of intracellular calcium levels. Mol Cell Biol. 1993 Dec;13(12):7507–7514. doi: 10.1128/mcb.13.12.7507. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES