Abstract
Agrin induces the formation of highly localized specializations on myotubes at which nicotinic acetylcholine receptors (AChRs) and many other components of the postsynaptic apparatus at the vertebrate skeletal neuromuscular junction accumulate. Agrin also induces AChR tyrosine phosphorylation. Treatments that inhibit tyrosine phosphorylation prevent AChR aggregation. To examine further the relationship between tyrosine phosphorylation and receptor aggregation, we have used the technique of fluorescence recovery after photobleaching to assess the lateral mobility of AChRs and other surface proteins in mouse C2 myotubes treated with agrin or with pervanadate, a protein tyrosine phosphatase inhibitor. Agrin induced the formation of patches in C2 myotubes that stained intensely with anti-phosphotyrosine antibodies and within which AChRs were relatively immobile. Pervanadate, on the other hand, increased protein tyrosine phosphorylation throughout the myotube and caused a reduction in the mobility of diffusely distributed AChRs, without affecting the mobility of other membrane proteins. Pervanadate, like agrin, caused an increase in AChR tyrosine phosphorylation and a decrease in the rate at which AChRs could be extracted from intact myotubes by mild detergent treatment, suggesting that immobilized receptors were phosphorylated and therefore less extractable. Indeed, phosphorylated receptors were extracted from agrin-treated myotubes more slowly than nonphosphorylated receptors. AChR aggregates at developing neuromuscular junctions in embryonic rat muscles also labeled with anti- phosphotyrosine antibodies, suggesting that tyrosine phosphorylation could mediate AChR aggregation in vivo as well. Thus, agrin appears to induce AChR aggregation by creating circumscribed domains of increased protein tyrosine phosphorylation within which receptors become phosphorylated and immobilized.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axelrod D., Ravdin P., Koppel D. E., Schlessinger J., Webb W. W., Elson E. L., Podleski T. R. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4594–4598. doi: 10.1073/pnas.73.12.4594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker L. P., Peng H. B. Tyrosine phosphorylation and acetylcholine receptor cluster formation in cultured Xenopus muscle cells. J Cell Biol. 1993 Jan;120(1):185–195. doi: 10.1083/jcb.120.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blau H. M., Chiu C. P., Webster C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell. 1983 Apr;32(4):1171–1180. doi: 10.1016/0092-8674(83)90300-8. [DOI] [PubMed] [Google Scholar]
- Bowe M. A., Deyst K. A., Leszyk J. D., Fallon J. R. Identification and purification of an agrin receptor from Torpedo postsynaptic membranes: a heteromeric complex related to the dystroglycans. Neuron. 1994 May;12(5):1173–1180. doi: 10.1016/0896-6273(94)90324-7. [DOI] [PubMed] [Google Scholar]
- Boyle W. J., van der Geer P., Hunter T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 1991;201:110–149. doi: 10.1016/0076-6879(91)01013-r. [DOI] [PubMed] [Google Scholar]
- Campanelli J. T., Hoch W., Rupp F., Kreiner T., Scheller R. H. Agrin mediates cell contact-induced acetylcholine receptor clustering. Cell. 1991 Nov 29;67(5):909–916. doi: 10.1016/0092-8674(91)90364-5. [DOI] [PubMed] [Google Scholar]
- Campanelli J. T., Roberds S. L., Campbell K. P., Scheller R. H. A role for dystrophin-associated glycoproteins and utrophin in agrin-induced AChR clustering. Cell. 1994 Jun 3;77(5):663–674. doi: 10.1016/0092-8674(94)90051-5. [DOI] [PubMed] [Google Scholar]
- Cohen M. W., Godfrey E. W. Early appearance of and neuronal contribution to agrin-like molecules at embryonic frog nerve-muscle synapses formed in culture. J Neurosci. 1992 Aug;12(8):2982–2992. doi: 10.1523/JNEUROSCI.12-08-02982.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen M. W., Jacobson C., Godfrey E. W., Campbell K. P., Carbonetto S. Distribution of alpha-dystroglycan during embryonic nerve-muscle synaptogenesis. J Cell Biol. 1995 May;129(4):1093–1101. doi: 10.1083/jcb.129.4.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper J. A., Sefton B. M., Hunter T. Detection and quantification of phosphotyrosine in proteins. Methods Enzymol. 1983;99:387–402. doi: 10.1016/0076-6879(83)99075-4. [DOI] [PubMed] [Google Scholar]
- Dubinsky J. M., Loftus D. J., Fischbach G. D., Elson E. L. Formation of acetylcholine receptor clusters in chick myotubes: migration or new insertion? J Cell Biol. 1989 Oct;109(4 Pt 1):1733–1743. doi: 10.1083/jcb.109.4.1733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards C., Frisch H. L. A model for the localization of acetylcholine receptors at the muscle endplate. J Neurobiol. 1976 Jul;7(4):377–381. doi: 10.1002/neu.480070409. [DOI] [PubMed] [Google Scholar]
- Ferns M. J., Campanelli J. T., Hoch W., Scheller R. H., Hall Z. The ability of agrin to cluster AChRs depends on alternative splicing and on cell surface proteoglycans. Neuron. 1993 Sep;11(3):491–502. doi: 10.1016/0896-6273(93)90153-i. [DOI] [PubMed] [Google Scholar]
- Ferns M., Hoch W., Campanelli J. T., Rupp F., Hall Z. W., Scheller R. H. RNA splicing regulates agrin-mediated acetylcholine receptor clustering activity on cultured myotubes. Neuron. 1992 Jun;8(6):1079–1086. doi: 10.1016/0896-6273(92)90129-2. [DOI] [PubMed] [Google Scholar]
- Forsayeth J. R., Franco A., Jr, Rossi A. B., Lansman J. B., Hall Z. W. Expression of functional mouse muscle acetylcholine receptors in Chinese hamster ovary cells. J Neurosci. 1990 Aug;10(8):2771–2779. doi: 10.1523/JNEUROSCI.10-08-02771.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Froehner S. C. Regulation of ion channel distribution at synapses. Annu Rev Neurosci. 1993;16:347–368. doi: 10.1146/annurev.ne.16.030193.002023. [DOI] [PubMed] [Google Scholar]
- Gee S. H., Montanaro F., Lindenbaum M. H., Carbonetto S. Dystroglycan-alpha, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell. 1994 Jun 3;77(5):675–686. doi: 10.1016/0092-8674(94)90052-3. [DOI] [PubMed] [Google Scholar]
- Godfrey E. W., Nitkin R. M., Wallace B. G., Rubin L. L., McMahan U. J. Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells. J Cell Biol. 1984 Aug;99(2):615–627. doi: 10.1083/jcb.99.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon H., Hall Z. W. Glycosaminoglycan variants in the C2 muscle cell line. Dev Biol. 1989 Sep;135(1):1–11. doi: 10.1016/0012-1606(89)90152-8. [DOI] [PubMed] [Google Scholar]
- Gu Y., Ralston E., Murphy-Erdosh C., Black R. A., Hall Z. W. Acetylcholine receptor in a C2 muscle cell variant is retained in the endoplasmic reticulum. J Cell Biol. 1989 Aug;109(2):729–738. doi: 10.1083/jcb.109.2.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall Z. W., Sanes J. R. Synaptic structure and development: the neuromuscular junction. Cell. 1993 Jan;72 (Suppl):99–121. doi: 10.1016/s0092-8674(05)80031-5. [DOI] [PubMed] [Google Scholar]
- Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kramarcy N. R., Vidal A., Froehner S. C., Sealock R. Association of utrophin and multiple dystrophin short forms with the mammalian M(r) 58,000 dystrophin-associated protein (syntrophin). J Biol Chem. 1994 Jan 28;269(4):2870–2876. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- McMahan U. J., Slater C. R. The influence of basal lamina on the accumulation of acetylcholine receptors at synaptic sites in regenerating muscle. J Cell Biol. 1984 Apr;98(4):1453–1473. doi: 10.1083/jcb.98.4.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMahan U. J. The agrin hypothesis. Cold Spring Harb Symp Quant Biol. 1990;55:407–418. doi: 10.1101/sqb.1990.055.01.041. [DOI] [PubMed] [Google Scholar]
- Mei L., Huganir R. L. Purification and characterization of a protein tyrosine phosphatase which dephosphorylates the nicotinic acetylcholine receptor. J Biol Chem. 1991 Aug 25;266(24):16063–16072. [PubMed] [Google Scholar]
- Merlie J. P., Sebbane R. Acetylcholine receptor subunits transit a precursor pool before acquiring alpha-bungarotoxin binding activity. J Biol Chem. 1981 Apr 25;256(8):3605–3608. [PubMed] [Google Scholar]
- Nastuk M. A., Lieth E., Ma J. Y., Cardasis C. A., Moynihan E. B., McKechnie B. A., Fallon J. R. The putative agrin receptor binds ligand in a calcium-dependent manner and aggregates during agrin-induced acetylcholine receptor clustering. Neuron. 1991 Nov;7(5):807–818. doi: 10.1016/0896-6273(91)90283-6. [DOI] [PubMed] [Google Scholar]
- Nitkin R. M., Smith M. A., Magill C., Fallon J. R., Yao Y. M., Wallace B. G., McMahan U. J. Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J Cell Biol. 1987 Dec;105(6 Pt 1):2471–2478. doi: 10.1083/jcb.105.6.2471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohtsuka M., Ihara S., Ogawa R., Watanabe T., Watanabe Y. Preparation and characterization of antibodies to O-phosphotyrosine and their use for identification of phosphotyrosine-containing proteins. Int J Cancer. 1984 Dec 15;34(6):855–861. doi: 10.1002/ijc.2910340618. [DOI] [PubMed] [Google Scholar]
- PUCK T. T., CIECIURA S. J., ROBINSON A. Genetics of somatic mammalian cells. III. Long-term cultivation of euploid cells from human and animal subjects. J Exp Med. 1958 Dec 1;108(6):945–956. doi: 10.1084/jem.108.6.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podleski T. R., Salpeter M. M. Acetylcholine receptor clustering and triton solubility: neural effect. J Neurobiol. 1988 Mar;19(2):167–185. doi: 10.1002/neu.480190206. [DOI] [PubMed] [Google Scholar]
- Prives J., Fulton A. B., Penman S., Daniels M. P., Christian C. N. Interaction of the cytoskeletal framework with acetylcholine receptor on th surface of embryonic muscle cells in culture. J Cell Biol. 1982 Jan;92(1):231–236. doi: 10.1083/jcb.92.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pumiglia K. M., Lau L. F., Huang C. K., Burroughs S., Feinstein M. B. Activation of signal transduction in platelets by the tyrosine phosphatase inhibitor pervanadate (vanadyl hydroperoxide). Biochem J. 1992 Sep 1;286(Pt 2):441–449. doi: 10.1042/bj2860441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qu Z. C., Moritz E., Huganir R. L. Regulation of tyrosine phosphorylation of the nicotinic acetylcholine receptor at the rat neuromuscular junction. Neuron. 1990 Mar;4(3):367–378. doi: 10.1016/0896-6273(90)90049-l. [DOI] [PubMed] [Google Scholar]
- Reist N. E., Werle M. J., McMahan U. J. Agrin released by motor neurons induces the aggregation of acetylcholine receptors at neuromuscular junctions. Neuron. 1992 May;8(5):865–868. doi: 10.1016/0896-6273(92)90200-w. [DOI] [PubMed] [Google Scholar]
- Stya M., Axelrod D. Mobility and detergent extractability of acetylcholine receptors on cultured rat myotubes: a correlation. J Cell Biol. 1983 Jul;97(1):48–51. doi: 10.1083/jcb.97.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugiyama J., Bowen D. C., Hall Z. W. Dystroglycan binds nerve and muscle agrin. Neuron. 1994 Jul;13(1):103–115. doi: 10.1016/0896-6273(94)90462-6. [DOI] [PubMed] [Google Scholar]
- Swope S. L., Huganir R. L. Molecular cloning of two abundant protein tyrosine kinases in Torpedo electric organ that associate with the acetylcholine receptor. J Biol Chem. 1993 Nov 25;268(33):25152–25161. [PubMed] [Google Scholar]
- Tsim K. W., Ruegg M. A., Escher G., Kröger S., McMahan U. J. cDNA that encodes active agrin. Neuron. 1992 Apr;8(4):677–689. doi: 10.1016/0896-6273(92)90089-v. [DOI] [PubMed] [Google Scholar]
- Tzartos S. J., Valcana C., Kouvatsou R., Kokla A. The tyrosine phosphorylation site of the acetylcholine receptor beta subunit is located in a highly immunogenic epitope implicated in channel function: antibody probes for beta subunit phosphorylation and function. EMBO J. 1993 Dec 15;12(13):5141–5149. doi: 10.1002/j.1460-2075.1993.tb06209.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace B. G. Agrin-induced specializations contain cytoplasmic, membrane, and extracellular matrix-associated components of the postsynaptic apparatus. J Neurosci. 1989 Apr;9(4):1294–1302. doi: 10.1523/JNEUROSCI.09-04-01294.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace B. G. Mechanism of agrin-induced acetylcholine receptor aggregation. J Neurobiol. 1992 Jul;23(5):592–604. doi: 10.1002/neu.480230512. [DOI] [PubMed] [Google Scholar]
- Wallace B. G., Qu Z., Huganir R. L. Agrin induces phosphorylation of the nicotinic acetylcholine receptor. Neuron. 1991 Jun;6(6):869–878. doi: 10.1016/0896-6273(91)90227-q. [DOI] [PubMed] [Google Scholar]
- Wallace B. G. Regulation of agrin-induced acetylcholine receptor aggregation by Ca++ and phorbol ester. J Cell Biol. 1988 Jul;107(1):267–278. doi: 10.1083/jcb.107.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace B. G. Regulation of the interaction of nicotinic acetylcholine receptors with the cytoskeleton by agrin-activated protein tyrosine kinase. J Cell Biol. 1995 Mar;128(6):1121–1129. doi: 10.1083/jcb.128.6.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace B. G. Staurosporine inhibits agrin-induced acetylcholine receptor phosphorylation and aggregation. J Cell Biol. 1994 May;125(3):661–668. doi: 10.1083/jcb.125.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yaffe D., Saxel O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 1977 Dec 22;270(5639):725–727. doi: 10.1038/270725a0. [DOI] [PubMed] [Google Scholar]
- van der Geer P., Hunter T. Phosphopeptide mapping and phosphoamino acid analysis by electrophoresis and chromatography on thin-layer cellulose plates. Electrophoresis. 1994 Mar-Apr;15(3-4):544–554. doi: 10.1002/elps.1150150173. [DOI] [PubMed] [Google Scholar]