Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Nov 2;131(4):975–988. doi: 10.1083/jcb.131.4.975

Successful histocompatible myoblast transplantation in dystrophin- deficient mdx mouse despite the production of antibodies against dystrophin

PMCID: PMC2200003  PMID: 7490298

Abstract

Myoblast transplantation has been considered a potential treatment for some muscular disorders. It has proven very successful, however, only in immunodeficient or immunosuppressed mice. In this study, myoblasts from C57BL10J +/+ mice were transplanted, with no immunosuppressive treatment, in the tibialis anterior of fully histocompatible but dystrophin-deficient C57BL10J mdx/mdx mice. One to 9 months after transplantation, the success of the graft was evaluated by immunohistochemistry. All the transplanted mice (n = 24) developed dystrophin-positive fibers following transplantation. Depending on myoblast cultures, transplantations, and time of analysis, the mice presented 15 to 80% of dystrophin-positive fibers in transplanted muscles. These fibers were correctly oriented and they were either from donor or hybrid origin. The dystrophin-positive fibers remained stable up to 9 months. Possible humoral and cellular immune responses were investigated after grafting. Antibodies directed against dystrophin and/or muscle membrane were developed by 58% of the mice as demonstrated by immunohistochemistry and Western blotting. Despite the presence of these antibodies, dystrophin-positive fibers were still present in grafted muscles 9 months after transplantation. Moreover, the muscles did not show massive infiltration by CD4 cells, CD8 cells, or macrophages, as already described in myoblast allotransplantations. This lack of rejection was attributed to the sequestrated nature of dystrophin after fiber formation. These results indicate that myoblast transplantation leads to fiber formation when immunocompetent but fully histocompatible donors and recipients are used and that dystrophin incompatibility alone is not sufficient to induce an immunological rejection reaction.

Full Text

The Full Text of this article is available as a PDF (8.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allbrook D. Skeletal muscle regeneration. Muscle Nerve. 1981 May-Jun;4(3):234–245. doi: 10.1002/mus.880040311. [DOI] [PubMed] [Google Scholar]
  2. Blau H. M., Dhawan J., Pavlath G. K. Myoblasts in pattern formation and gene therapy. Trends Genet. 1993 Aug;9(8):269–274. doi: 10.1016/0168-9525(93)90012-7. [DOI] [PubMed] [Google Scholar]
  3. Campion D. R. The muscle satellite cell: a review. Int Rev Cytol. 1984;87:225–251. doi: 10.1016/s0074-7696(08)62444-4. [DOI] [PubMed] [Google Scholar]
  4. Cossu G., Zani B., Coletta M., Bouchè M., Pacifici M., Molinaro M. In vitro differentiation of satellite cells isolated from normal and dystrophic mammalian muscles. A comparison with embryonic myogenic cells. Cell Differ. 1980 Dec;9(6):357–368. doi: 10.1016/0045-6039(80)90035-4. [DOI] [PubMed] [Google Scholar]
  5. Coulton G. R., Morgan J. E., Partridge T. A., Sloper J. C. The mdx mouse skeletal muscle myopathy: I. A histological, morphometric and biochemical investigation. Neuropathol Appl Neurobiol. 1988 Jan-Feb;14(1):53–70. doi: 10.1111/j.1365-2990.1988.tb00866.x. [DOI] [PubMed] [Google Scholar]
  6. Danko I., Chapman V., Wolff J. A. The frequency of revertants in mdx mouse genetic models for Duchenne muscular dystrophy. Pediatr Res. 1992 Jul;32(1):128–131. doi: 10.1203/00006450-199207000-00025. [DOI] [PubMed] [Google Scholar]
  7. Ervasti J. M., Campbell K. P. Membrane organization of the dystrophin-glycoprotein complex. Cell. 1991 Sep 20;66(6):1121–1131. doi: 10.1016/0092-8674(91)90035-w. [DOI] [PubMed] [Google Scholar]
  8. Goebels N., Michaelis D., Wekerle H., Hohlfeld R. Human myoblasts as antigen-presenting cells. J Immunol. 1992 Jul 15;149(2):661–667. [PubMed] [Google Scholar]
  9. Grounds M., Partridge T. A., Sloper J. C. The contribution of exogenous cells to regenerating skeletal muscle: an isoenzyme study of muscle allografts in mice. J Pathol. 1980 Dec;132(4):325–341. doi: 10.1002/path.1711320404. [DOI] [PubMed] [Google Scholar]
  10. Gussoni E., Pavlath G. K., Lanctot A. M., Sharma K. R., Miller R. G., Steinman L., Blau H. M. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature. 1992 Apr 2;356(6368):435–438. doi: 10.1038/356435a0. [DOI] [PubMed] [Google Scholar]
  11. Guérette B., Asselin I., Vilquin J. T., Roy R., Tremblay J. P. Lymphocyte infiltration following allo- and xenomyoblast transplantation in mdx mice. Muscle Nerve. 1995 Jan;18(1):39–51. doi: 10.1002/mus.880180107. [DOI] [PubMed] [Google Scholar]
  12. Hoffman E. P., Brown R. H., Jr, Kunkel L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987 Dec 24;51(6):919–928. doi: 10.1016/0092-8674(87)90579-4. [DOI] [PubMed] [Google Scholar]
  13. Hoffman E. P., Morgan J. E., Watkins S. C., Partridge T. A. Somatic reversion/suppression of the mouse mdx phenotype in vivo. J Neurol Sci. 1990 Oct;99(1):9–25. doi: 10.1016/0022-510x(90)90195-s. [DOI] [PubMed] [Google Scholar]
  14. Hohlfeld R., Engel A. G. The immunobiology of muscle. Immunol Today. 1994 Jun;15(6):269–274. doi: 10.1016/0167-5699(94)90006-X. [DOI] [PubMed] [Google Scholar]
  15. Huard J., Bouchard J. P., Roy R., Labrecque C., Dansereau G., Lemieux B., Tremblay J. P. Myoblast transplantation produced dystrophin-positive muscle fibres in a 16-year-old patient with Duchenne muscular dystrophy. Clin Sci (Lond) 1991 Aug;81(2):287–288. doi: 10.1042/cs0810287. [DOI] [PubMed] [Google Scholar]
  16. Huard J., Bouchard J. P., Roy R., Malouin F., Dansereau G., Labrecque C., Albert N., Richards C. L., Lemieux B., Tremblay J. P. Human myoblast transplantation: preliminary results of 4 cases. Muscle Nerve. 1992 May;15(5):550–560. doi: 10.1002/mus.880150504. [DOI] [PubMed] [Google Scholar]
  17. Huard J., Roy R., Guérette B., Verreault S., Tremblay G., Tremblay J. P. Human myoblast transplantation in immunodeficient and immunosuppressed mice: evidence of rejection. Muscle Nerve. 1994 Feb;17(2):224–234. doi: 10.1002/mus.880170214. [DOI] [PubMed] [Google Scholar]
  18. Huard J., Verreault S., Roy R., Tremblay M., Tremblay J. P. High efficiency of muscle regeneration after human myoblast clone transplantation in SCID mice. J Clin Invest. 1994 Feb;93(2):586–599. doi: 10.1172/JCI117011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Karpati G., Ajdukovic D., Arnold D., Gledhill R. B., Guttmann R., Holland P., Koch P. A., Shoubridge E., Spence D., Vanasse M. Myoblast transfer in Duchenne muscular dystrophy. Ann Neurol. 1993 Jul;34(1):8–17. doi: 10.1002/ana.410340105. [DOI] [PubMed] [Google Scholar]
  20. Karpati G. Immunological aspects of histoincompatible myoblast transfer into non-tolerant hosts. Adv Exp Med Biol. 1990;280:31–34. doi: 10.1007/978-1-4684-5865-7_5. [DOI] [PubMed] [Google Scholar]
  21. Karpati G., Pouliot Y., Zubrzycka-Gaarn E., Carpenter S., Ray P. N., Worton R. G., Holland P. Dystrophin is expressed in mdx skeletal muscle fibers after normal myoblast implantation. Am J Pathol. 1989 Jul;135(1):27–32. [PMC free article] [PubMed] [Google Scholar]
  22. Kinoshita I., Huard J., Tremblay J. P. Utilization of myoblasts from transgenic mice to evaluate the efficacy of myoblast transplantation. Muscle Nerve. 1994 Sep;17(9):975–980. doi: 10.1002/mus.880170903. [DOI] [PubMed] [Google Scholar]
  23. Kinoshita I., Vilquin J. T., Guérette B., Asselin I., Roy R., Tremblay J. P. Very efficient myoblast allotransplantation in mice under FK506 immunosuppression. Muscle Nerve. 1994 Dec;17(12):1407–1415. doi: 10.1002/mus.880171210. [DOI] [PubMed] [Google Scholar]
  24. Koenig M., Monaco A. P., Kunkel L. M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell. 1988 Apr 22;53(2):219–228. doi: 10.1016/0092-8674(88)90383-2. [DOI] [PubMed] [Google Scholar]
  25. Labrecque C., Roy R., Tremblay J. P. Immune reactions after myoblast transplantation in mouse muscles. Transplant Proc. 1992 Dec;24(6):2889–2892. [PubMed] [Google Scholar]
  26. Law P. K., Bertorini T. E., Goodwin T. G., Chen M., Fang Q. W., Li H. J., Kirby D. S., Florendo J. A., Herrod H. G., Golden G. S. Dystrophin production induced by myoblast transfer therapy in Duchenne muscular dystrophy. Lancet. 1990 Jul 14;336(8707):114–115. doi: 10.1016/0140-6736(90)91628-n. [DOI] [PubMed] [Google Scholar]
  27. Law P. K., Goodwin T. G., Li H. J. Histoincompatible myoblast injection improves muscle structure and function of dystrophic mice. Transplant Proc. 1988 Jun;20(3 Suppl 3):1114–1119. [PubMed] [Google Scholar]
  28. Law P. K., Goodwin T. G., Wang M. G. Normal myoblast injections provide genetic treatment for murine dystrophy. Muscle Nerve. 1988 Jun;11(6):525–533. doi: 10.1002/mus.880110602. [DOI] [PubMed] [Google Scholar]
  29. Lev A. A., Feener C. C., Kunkel L. M., Brown R. H., Jr Expression of the Duchenne's muscular dystrophy gene in cultured muscle cells. J Biol Chem. 1987 Nov 25;262(33):15817–15820. [PubMed] [Google Scholar]
  30. Louboutin J. P., Fichter-Gagnepain V., Thaon E., Fardeau M. Morphometric analysis of mdx diaphragm muscle fibres. Comparison with hindlimb muscles. Neuromuscul Disord. 1993 Sep-Nov;3(5-6):463–469. doi: 10.1016/0960-8966(93)90098-5. [DOI] [PubMed] [Google Scholar]
  31. Morgan J. E., Beauchamp J. R., Pagel C. N., Peckham M., Ataliotis P., Jat P. S., Noble M. D., Farmer K., Partridge T. A. Myogenic cell lines derived from transgenic mice carrying a thermolabile T antigen: a model system for the derivation of tissue-specific and mutation-specific cell lines. Dev Biol. 1994 Apr;162(2):486–498. doi: 10.1006/dbio.1994.1103. [DOI] [PubMed] [Google Scholar]
  32. Morgan J. E., Hoffman E. P., Partridge T. A. Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse. J Cell Biol. 1990 Dec;111(6 Pt 1):2437–2449. doi: 10.1083/jcb.111.6.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Morgan J. E., Pagel C. N., Sherratt T., Partridge T. A. Long-term persistence and migration of myogenic cells injected into pre-irradiated muscles of mdx mice. J Neurol Sci. 1993 Apr;115(2):191–200. doi: 10.1016/0022-510x(93)90224-m. [DOI] [PubMed] [Google Scholar]
  34. Partridge T. A. Invited review: myoblast transfer: a possible therapy for inherited myopathies? Muscle Nerve. 1991 Mar;14(3):197–212. doi: 10.1002/mus.880140302. [DOI] [PubMed] [Google Scholar]
  35. Partridge T. A., Morgan J. E., Coulton G. R., Hoffman E. P., Kunkel L. M. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature. 1989 Jan 12;337(6203):176–179. doi: 10.1038/337176a0. [DOI] [PubMed] [Google Scholar]
  36. Pastoret C., Sebille A. Further aspects of muscular dystrophy in mdx mice. Neuromuscul Disord. 1993 Sep-Nov;3(5-6):471–475. doi: 10.1016/0960-8966(93)90099-6. [DOI] [PubMed] [Google Scholar]
  37. Pavlath G. K., Rando T. A., Blau H. M. Transient immunosuppressive treatment leads to long-term retention of allogeneic myoblasts in hybrid myofibers. J Cell Biol. 1994 Dec;127(6 Pt 2):1923–1932. doi: 10.1083/jcb.127.6.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pavlath G. K., Rich K., Webster S. G., Blau H. M. Localization of muscle gene products in nuclear domains. Nature. 1989 Feb 9;337(6207):570–573. doi: 10.1038/337570a0. [DOI] [PubMed] [Google Scholar]
  39. Rando T. A., Blau H. M. Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol. 1994 Jun;125(6):1275–1287. doi: 10.1083/jcb.125.6.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Roy R., Dansereau G., Tremblay J. P., Belles-Isles M., Huard J., Labrecque C., Bouchard J. P. Expression of major histocompatibility complex antigens on human myoblasts. Transplant Proc. 1991 Feb;23(1 Pt 1):799–801. [PubMed] [Google Scholar]
  41. Roy R., Tremblay J. P., Huard J., Richards C., Malouin F., Bouchard J. P. Antibody formation after myoblast transplantation in Duchenne-dystrophic patients, donor HLA compatible. Transplant Proc. 1993 Feb;25(1 Pt 2):995–997. [PubMed] [Google Scholar]
  42. Scott M. O., Sylvester J. E., Heiman-Patterson T., Shi Y. J., Fieles W., Stedman H., Burghes A., Ray P., Worton R., Fischbeck K. H. Duchenne muscular dystrophy gene expression in normal and diseased human muscle. Science. 1988 Mar 18;239(4846):1418–1420. doi: 10.1126/science.2450401. [DOI] [PubMed] [Google Scholar]
  43. Sicinski P., Geng Y., Ryder-Cook A. S., Barnard E. A., Darlison M. G., Barnard P. J. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science. 1989 Jun 30;244(4912):1578–1580. doi: 10.1126/science.2662404. [DOI] [PubMed] [Google Scholar]
  44. Tremblay J. P., Malouin F., Roy R., Huard J., Bouchard J. P., Satoh A., Richards C. L. Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant. 1993 Mar-Apr;2(2):99–112. doi: 10.1177/096368979300200203. [DOI] [PubMed] [Google Scholar]
  45. Vilquin J. T., Asselin I., Guérette B., Kinoshita I., Lille S., Roy R., Tremblay J. P. Myoblast allotransplantation in mice: degree of success varies depending on the efficacy of various immunosuppressive treatments. Transplant Proc. 1994 Dec;26(6):3372–3373. [PubMed] [Google Scholar]
  46. Vilquin J. T., Asselin I., Guérette B., Kinoshita I., Roy R., Tremblay J. P. Successful myoblast allotransplantation in mdx mice using rapamycin. Transplantation. 1995 Feb 15;59(3):422–426. [PubMed] [Google Scholar]
  47. Vilquin J. T., Braun S., Labouret P., Zuber G., Tranchant C., Poindron P., Warter J. M. Specific effect of corticoids on acetylcholine receptor expression in rat skeletal muscle cell cultures. J Neurosci Res. 1992 Feb;31(2):285–293. doi: 10.1002/jnr.490310209. [DOI] [PubMed] [Google Scholar]
  48. Vilquin J. T., Guérette B., Kinoshita I., Roy B., Goulet M., Gravel C., Roy R., Tremblay J. P. FK506 immunosuppression to control the immune reactions triggered by first-generation adenovirus-mediated gene transfer. Hum Gene Ther. 1995 Nov;6(11):1391–1401. doi: 10.1089/hum.1995.6.11-1391. [DOI] [PubMed] [Google Scholar]
  49. Wakeford S., Watt D. J., Partridge T. A. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD. Muscle Nerve. 1991 Jan;14(1):42–50. doi: 10.1002/mus.880140108. [DOI] [PubMed] [Google Scholar]
  50. Watkins S. C., Hoffman E. P., Slayter H. S., Kunkel L. M. Immunoelectron microscopic localization of dystrophin in myofibres. Nature. 1988 Jun 30;333(6176):863–866. doi: 10.1038/333863a0. [DOI] [PubMed] [Google Scholar]
  51. Watt D. J., Karasinski J., England M. A. Migration of lacZ positive cells from the tibialis anterior to the extensor digitorum longus muscle of the X-linked muscular dystrophic (mdx) mouse. J Muscle Res Cell Motil. 1993 Feb;14(1):121–132. doi: 10.1007/BF00132186. [DOI] [PubMed] [Google Scholar]
  52. Watt D. J., Lambert K., Morgan J. E., Partridge T. A., Sloper J. C. Incorporation of donor muscle precursor cells into an area of muscle regeneration in the host mouse. J Neurol Sci. 1982 Dec;57(2-3):319–331. doi: 10.1016/0022-510x(82)90038-7. [DOI] [PubMed] [Google Scholar]
  53. Watt D. J., Morgan J. E., Partridge T. A. Long term survival of allografted muscle precursor cells following a limited period of treatment with cyclosporin A. Clin Exp Immunol. 1984 Feb;55(2):419–426. [PMC free article] [PubMed] [Google Scholar]
  54. Zhao J., Yoshioka K., Miike T., Miyatake M. Developmental studies of dystrophin-positive fibers in mdx, and DRP localization. J Neurol Sci. 1993 Jan;114(1):104–108. doi: 10.1016/0022-510x(93)90056-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES