Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Nov 2;131(4):1025–1037. doi: 10.1083/jcb.131.4.1025

Manganese effectively supports yeast cell-cycle progression in place of calcium

PMCID: PMC2200009  PMID: 7490280

Abstract

Metal ion requirements for the proliferation of Saccharomyces cerevisiae were investigated. We used bis-(o-aminophenoxy)-ethane- N,N,N',N'-tetraacetic acid (BAPTA), a relatively acid tolerant chelator, to reduce the free metal ion concentrations in culture media. Chelatable metal ions were added back individually and in combination. In addition to a requirement for approximately 10 pM external free Zn2+ we found an interchangeable requirement for either 66 nM free Ca2+ or only 130 pM free Mn2+. Cells depleted of Mn2+ and Ca2+ arrested as viable cells with 2 N nuclei and tended to have very small minibuds. In the absence of added Mn2+, robust growth required approximately 60 microM total internal Ca2+. In the presence of added Mn2+, robust growth continued even when internal Ca2+ was < 3% this level. Chelator- free experiments showed that MnCl2 strongly and CaCl2 weakly restored high-temperature growth of cdc1ts strains which similarly arrest as viable cells with 2 N nuclear contents and small buds. Its much greater effectiveness compared with Ca2+ suggests that Mn2+ is likely to be a physiologic mediator of bud and nuclear development in yeast. This stands in marked contrast to a claim that Ca2+ is uniquely required for cell-cycle progression in yeast. We discuss the possibility that Mn2+ may function as an intracellular signal transducer and how this possibility relates to previous claims of Ca2+'s roles in yeast metabolism.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anraku Y., Ohya Y., Iida H. Cell cycle control by calcium and calmodulin in Saccharomyces cerevisiae. Biochim Biophys Acta. 1991 Jul 10;1093(2-3):169–177. doi: 10.1016/0167-4889(91)90119-i. [DOI] [PubMed] [Google Scholar]
  2. Baum P., Furlong C., Byers B. Yeast gene required for spindle pole body duplication: homology of its product with Ca2+-binding proteins. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5512–5516. doi: 10.1073/pnas.83.15.5512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Belde P. J., Vossen J. H., Borst-Pauwels G. W., Theuvenet A. P. Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of Saccharomyces cerevisiae. FEBS Lett. 1993 May 24;323(1-2):113–118. doi: 10.1016/0014-5793(93)81460-h. [DOI] [PubMed] [Google Scholar]
  4. Bertl A., Gradmann D., Slayman C. L. Calcium- and voltage-dependent ion channels in Saccharomyces cerevisiae. Philos Trans R Soc Lond B Biol Sci. 1992 Oct 29;338(1283):63–72. doi: 10.1098/rstb.1992.0129. [DOI] [PubMed] [Google Scholar]
  5. Brewer B. J., Chlebowicz-Sledziewska E., Fangman W. L. Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae. Mol Cell Biol. 1984 Nov;4(11):2529–2531. doi: 10.1128/mcb.4.11.2529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Creutz C. E., Snyder S. L., Kambouris N. G. Calcium-dependent secretory vesicle-binding and lipid-binding proteins of Saccharomyces cerevisiae. Yeast. 1991 Apr;7(3):229–244. doi: 10.1002/yea.320070305. [DOI] [PubMed] [Google Scholar]
  7. Dancis A., Klausner R. D., Hinnebusch A. G., Barriocanal J. G. Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol. 1990 May;10(5):2294–2301. doi: 10.1128/mcb.10.5.2294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davis T. N., Urdea M. S., Masiarz F. R., Thorner J. Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell. 1986 Nov 7;47(3):423–431. doi: 10.1016/0092-8674(86)90599-4. [DOI] [PubMed] [Google Scholar]
  9. Drapeau P., Nachshen D. A. Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain. J Physiol. 1984 Mar;348:493–510. doi: 10.1113/jphysiol.1984.sp015121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dunn T., Gable K., Beeler T. Regulation of cellular Ca2+ by yeast vacuoles. J Biol Chem. 1994 Mar 11;269(10):7273–7278. [PubMed] [Google Scholar]
  11. Eisen A., Taylor W. E., Blumberg H., Young E. T. The yeast regulatory protein ADR1 binds in a zinc-dependent manner to the upstream activating sequence of ADH2. Mol Cell Biol. 1988 Oct;8(10):4552–4556. doi: 10.1128/mcb.8.10.4552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Geiser J. R., van Tuinen D., Brockerhoff S. E., Neff M. M., Davis T. N. Can calmodulin function without binding calcium? Cell. 1991 Jun 14;65(6):949–959. doi: 10.1016/0092-8674(91)90547-c. [DOI] [PubMed] [Google Scholar]
  14. Goscin S. A., Fridovich I. The purification and properties of superoxide dismutase from Saccharomyces cerevisiae. Biochim Biophys Acta. 1972 Dec 7;289(2):276–283. doi: 10.1016/0005-2744(72)90078-2. [DOI] [PubMed] [Google Scholar]
  15. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  16. Guerrero A., Darszon A. Evidence for the activation of two different Ca2+ channels during the egg jelly-induced acrosome reaction of sea urchin sperm. J Biol Chem. 1989 Nov 25;264(33):19593–19599. [PubMed] [Google Scholar]
  17. Hartwell L. H. Saccharomyces cerevisiae cell cycle. Bacteriol Rev. 1974 Jun;38(2):164–198. doi: 10.1128/br.38.2.164-198.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hepler P. K. Calcium and mitosis. Int Rev Cytol. 1992;138:239–268. doi: 10.1016/s0074-7696(08)61590-9. [DOI] [PubMed] [Google Scholar]
  19. Hoar P. E., Kerrick W. G. Mn2+ activates skinned smooth muscle cells in the absence of myosin light chain phosphorylation. Pflugers Arch. 1988 Aug;412(3):225–230. doi: 10.1007/BF00582501. [DOI] [PubMed] [Google Scholar]
  20. Hutter K. J., Eipel H. E. Microbial determinations by flow cytometry. J Gen Microbiol. 1979 Aug;113(2):369–375. doi: 10.1099/00221287-113-2-369. [DOI] [PubMed] [Google Scholar]
  21. Iida H., Nakamura H., Ono T., Okumura M. S., Anraku Y. MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol Cell Biol. 1994 Dec;14(12):8259–8271. doi: 10.1128/mcb.14.12.8259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Iida H., Sakaguchi S., Yagawa Y., Anraku Y. Cell cycle control by Ca2+ in Saccharomyces cerevisiae. J Biol Chem. 1990 Dec 5;265(34):21216–21222. [PubMed] [Google Scholar]
  23. Iida H., Yagawa Y., Anraku Y. Essential role for induced Ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. A study of [Ca2+]i in single Saccharomyces cerevisiae cells with imaging of fura-2. J Biol Chem. 1990 Aug 5;265(22):13391–13399. [PubMed] [Google Scholar]
  24. Kawasaki H., Kurosu Y., Kasai H., Isobe T., Okuyama T. Limited digestion of calmodulin with trypsin in the presence or absence of various metal ions. J Biochem. 1986 May;99(5):1409–1416. doi: 10.1093/oxfordjournals.jbchem.a135610. [DOI] [PubMed] [Google Scholar]
  25. Keller C. H., LaPorte D. C., Toscano W. A., Jr, Storm D. R., Westcott K. R. Ca2+ regulation of cyclic nucleotide metabolism. Ann N Y Acad Sci. 1980;356:205–219. doi: 10.1111/j.1749-6632.1980.tb29612.x. [DOI] [PubMed] [Google Scholar]
  26. Lategan T. W., Brading A. F. Contractile effects of manganese on taenia of guinea pig cecum. Am J Physiol. 1988 Apr;254(4 Pt 1):G489–G494. doi: 10.1152/ajpgi.1988.254.4.G489. [DOI] [PubMed] [Google Scholar]
  27. Levin D. E., Bartlett-Heubusch E. Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J Cell Biol. 1992 Mar;116(5):1221–1229. doi: 10.1083/jcb.116.5.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Levin D. E., Fields F. O., Kunisawa R., Bishop J. M., Thorner J. A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell. 1990 Jul 27;62(2):213–224. doi: 10.1016/0092-8674(90)90360-q. [DOI] [PubMed] [Google Scholar]
  29. Lu K. P., Osmani S. A., Osmani A. H., Means A. R. Essential roles for calcium and calmodulin in G2/M progression in Aspergillus nidulans. J Cell Biol. 1993 May;121(3):621–630. doi: 10.1083/jcb.121.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lückhoff A., Clapham D. E. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca(2+)-permeable channel. Nature. 1992 Jan 23;355(6358):356–358. doi: 10.1038/355356a0. [DOI] [PubMed] [Google Scholar]
  31. Metcalfe J. C., Hesketh T. R., Smith G. A. Free cytosolic Ca2+ measurements with fluorine labelled indicators using 19FNMR. Cell Calcium. 1985 Apr;6(1-2):183–195. doi: 10.1016/0143-4160(85)90043-0. [DOI] [PubMed] [Google Scholar]
  32. Miyamoto S., Ohya Y., Ohsumi Y., Anraku Y. Nucleotide sequence of the CLS4 (CDC24) gene of Saccharomyces cerevisiae. Gene. 1987;54(1):125–132. doi: 10.1016/0378-1119(87)90354-4. [DOI] [PubMed] [Google Scholar]
  33. Mørk A., Geisler A. Calmodulin-dependent adenylate cyclase activity in rat cerebral cortex: effects of divalent cations, forskolin and isoprenaline. Arch Int Physiol Biochim. 1989 Jun;97(3):259–271. doi: 10.3109/13813458909075065. [DOI] [PubMed] [Google Scholar]
  34. Ohsumi Y., Anraku Y. Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J Biol Chem. 1983 May 10;258(9):5614–5617. [PubMed] [Google Scholar]
  35. Ohya Y., Goebl M., Goodman L. E., Petersen-Bjørn S., Friesen J. D., Tamanoi F., Anraku Y. Yeast CAL1 is a structural and functional homologue to the DPR1 (RAM) gene involved in ras processing. J Biol Chem. 1991 Jul 5;266(19):12356–12360. [PubMed] [Google Scholar]
  36. Ohya Y., Ohsumi Y., Anraku Y. Genetic study of the role of calcium ions in the cell division cycle of Saccharomyces cerevisiae: a calcium-dependent mutant and its trifluoperazine-dependent pseudorevertants. Mol Gen Genet. 1984;193(3):389–394. doi: 10.1007/BF00382073. [DOI] [PubMed] [Google Scholar]
  37. Ohya Y., Ohsumi Y., Anraku Y. Isolation and characterization of Ca2+-sensitive mutants of Saccharomyces cerevisiae. J Gen Microbiol. 1986 Apr;132(4):979–988. doi: 10.1099/00221287-132-4-979. [DOI] [PubMed] [Google Scholar]
  38. PORTZEHL H., CALDWELL P. C., RUEEGG J. C. THE DEPENDENCE OF CONTRACTION AND RELAXATION OF MUSCLE FIBRES FROM THE CRAB MAIA SQUINADO ON THE INTERNAL CONCENTRATION OF FREE CALCIUM IONS. Biochim Biophys Acta. 1964 May 25;79:581–591. doi: 10.1016/0926-6577(64)90224-4. [DOI] [PubMed] [Google Scholar]
  39. Payne W. E., Fitzgerald-Hayes M. A mutation in PLC1, a candidate phosphoinositide-specific phospholipase C gene from Saccharomyces cerevisiae, causes aberrant mitotic chromosome segregation. Mol Cell Biol. 1993 Jul;13(7):4351–4364. doi: 10.1128/mcb.13.7.4351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Riedel H., Parissenti A. M., Hansen H., Su L., Shieh H. L. Stimulation of calcium uptake in Saccharomyces cerevisiae by bovine protein kinase C alpha. J Biol Chem. 1993 Feb 15;268(5):3456–3462. [PubMed] [Google Scholar]
  41. Ritchie A. K. Catecholamine secretion in a rat pheochromocytoma cell line: two pathways for calcium entry. J Physiol. 1979 Jan;286:541–561. doi: 10.1113/jphysiol.1979.sp012636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Serrano R., Kielland-Brandt M. C., Fink G. R. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature. 1986 Feb 20;319(6055):689–693. doi: 10.1038/319689a0. [DOI] [PubMed] [Google Scholar]
  43. Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. doi: 10.1016/0076-6879(91)94004-v. [DOI] [PubMed] [Google Scholar]
  44. Spang A., Courtney I., Fackler U., Matzner M., Schiebel E. The calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a component of the half bridge of the spindle pole body. J Cell Biol. 1993 Oct;123(2):405–416. doi: 10.1083/jcb.123.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sutton H. C., Winterbourn C. C. Chelated iron-catalyzed OH. formation from paraquat radicals and H2O2: mechanism of formate oxidation. Arch Biochem Biophys. 1984 Nov 15;235(1):106–115. doi: 10.1016/0003-9861(84)90259-5. [DOI] [PubMed] [Google Scholar]
  46. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  47. Whitaker M. Regulation of the cell division cycle by inositol trisphosphate and the calcium signaling pathway. Adv Second Messenger Phosphoprotein Res. 1995;30:299–310. doi: 10.1016/s1040-7952(05)80012-6. [DOI] [PubMed] [Google Scholar]
  48. Williams R. J. Free manganese (II) and iron (II) cations can act as intracellular cell controls. FEBS Lett. 1982 Apr 5;140(1):3–10. doi: 10.1016/0014-5793(82)80508-5. [DOI] [PubMed] [Google Scholar]
  49. Wilson S. P., Kirshner N. Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells. J Biol Chem. 1983 Apr 25;258(8):4994–5000. [PubMed] [Google Scholar]
  50. Wolff D. J., Poirier P. G., Brostrom C. O., Brostrom M. A. Divalent cation binding properties of bovine brain Ca2+-dependent regulator protein. J Biol Chem. 1977 Jun 25;252(12):4108–4117. [PubMed] [Google Scholar]
  51. Youatt J. Calcium and microorganisms. Crit Rev Microbiol. 1993;19(2):83–97. doi: 10.3109/10408419309113524. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES