Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Jul 2;126(2):549–562. doi: 10.1083/jcb.126.2.549

Natural ligands of the B cell adhesion molecule CD22 beta can be masked by 9-O-acetylation of sialic acids

PMCID: PMC2200033  PMID: 8034751

Abstract

CD22 beta is a B cell-restricted phosphoprotein expressed on the surface of mature resting B cells. It mediates interactions with other cells partly or exclusively via recognition of alpha 2-6-linked sialic acids on glycoconjugates. The sialylated N-linked oligosaccharides recognized best by CD22 beta are common to many glycoproteins, suggesting that additional regulatory mechanisms may exist. Since the exocyclic side chain of sialic acid is required for recognition, we explored the effects of a naturally occurring modification of the side chain, 9-O-acetylation. Semisynthetic N-linked oligosaccharides terminating with 9-O-acetylated, alpha 2-6-linked sialic acids showed markedly reduced binding to CD22 beta relative to their non-O- acetylated counterparts. Murine lymphoid cells were probed for natural CD22 beta ligands that might be O-acetylated using recombinant soluble forms of CD22 beta (CD22 beta Rg) and influenza C esterase (CHE-Fc, which specifically removes 9-O-acetyl esters from sialic acids). By flow cytometry analysis, CD22 beta Rg binding to splenic B cells and a subset of T cells was increased by pretreatment with CHE-Fc, indicating that some potential CD22 beta ligands are naturally "masked" by 9-O- acetylation. Unmasking of these CD22 beta ligands by removal of 9-O- acetyl esters from intact splenocytes substantially increases their CD22 beta-dependent adhesion in an in vitro adhesion assay. Probing of murine lymphoid tissue sections by CD22 beta Rg and CHE-Fc treatment demonstrates regionally restricted and differentially expressed patterns of distribution between masked and unmasked ligands. For example, lymph node-associated follicular B cells express high levels of CD22 beta ligands, none of which are masked by 9-O-acetylation. In contrast, the ligands on lymph node-associated dendritic cells are almost completely masked by 9-O-acetylation, suggesting that masking may regulate interactions between CD22 beta-positive B cells and dendritic cells. In the thymus, only medullary cells express CD22 beta ligands, and a significant portion of these are masked by 9-O- acetylation, particularly at the cortical-medullary junction. Thus, 9-O- acetylation of sialic acids on immune cells is in a position to negatively regulate CD22 beta adhesion events in a manner depending on both cell type and tissue localization.

Full Text

The Full Text of this article is available as a PDF (10.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aasheim H. C., Aas-Eng D. A., Deggerdal A., Blomhoff H. K., Funderud S., Smeland E. B. Cell-specific expression of human beta-galactoside alpha 2,6-sialyltransferase transcripts differing in the 5' untranslated region. Eur J Biochem. 1993 Apr 1;213(1):467–475. doi: 10.1111/j.1432-1033.1993.tb17783.x. [DOI] [PubMed] [Google Scholar]
  2. Aruffo A., Kanner S. B., Sgroi D., Ledbetter J. A., Stamenkovic I. CD22-mediated stimulation of T cells regulates T-cell receptor/CD3-induced signaling. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10242–10246. doi: 10.1073/pnas.89.21.10242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bast B. J., Zhou L. J., Freeman G. J., Colley K. J., Ernst T. J., Munro J. M., Tedder T. F. The HB-6, CDw75, and CD76 differentiation antigens are unique cell-surface carbohydrate determinants generated by the beta-galactoside alpha 2,6-sialyltransferase. J Cell Biol. 1992 Jan;116(2):423–435. doi: 10.1083/jcb.116.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breg J., Kroon-Batenburg L. M., Strecker G., Montreuil J., Vliegenthart J. F. Conformational analysis of the sialyl alpha(2----3/6)N-acetyllactosamine structural element occurring in glycoproteins, by two-dimensional NOE 1H-NMR spectroscopy in combination with energy calculations by hard-sphere exo-anomeric and molecular mechanics force-field with hydrogen-bonding potential. Eur J Biochem. 1989 Jan 2;178(3):727–739. doi: 10.1111/j.1432-1033.1989.tb14504.x. [DOI] [PubMed] [Google Scholar]
  5. Butor C., Diaz S., Varki A. High level O-acetylation of sialic acids on N-linked oligosaccharides of rat liver membranes. Differential subcellular distribution of 7- and 9-O-acetyl groups and of enzymes involved in their regulation. J Biol Chem. 1993 May 15;268(14):10197–10206. [PubMed] [Google Scholar]
  6. Clark E. A., Lane P. J. Regulation of human B-cell activation and adhesion. Annu Rev Immunol. 1991;9:97–127. doi: 10.1146/annurev.iy.09.040191.000525. [DOI] [PubMed] [Google Scholar]
  7. Dörken B., Moldenhauer G., Pezzutto A., Schwartz R., Feller A., Kiesel S., Nadler L. M. HD39 (B3), a B lineage-restricted antigen whose cell surface expression is limited to resting and activated human B lymphocytes. J Immunol. 1986 Jun 15;136(12):4470–4479. [PubMed] [Google Scholar]
  8. Engel P., Nojima Y., Rothstein D., Zhou L. J., Wilson G. L., Kehrl J. H., Tedder T. F. The same epitope on CD22 of B lymphocytes mediates the adhesion of erythrocytes, T and B lymphocytes, neutrophils, and monocytes. J Immunol. 1993 Jun 1;150(11):4719–4732. [PubMed] [Google Scholar]
  9. Erikstein B. K., Funderud S., Beiske K., Aas-Eng A., De Lange Davies C., Blomhoff H. K., Smeland E. B. Cell cycle-dependent regulation of CDw75 (beta-galactoside alpha-2,6-sialyltransferase) on human B lymphocytes. Eur J Immunol. 1992 May;22(5):1149–1155. doi: 10.1002/eji.1830220507. [DOI] [PubMed] [Google Scholar]
  10. Gray D. Immunological memory. Annu Rev Immunol. 1993;11:49–77. doi: 10.1146/annurev.iy.11.040193.000405. [DOI] [PubMed] [Google Scholar]
  11. Haverkamp J., Schauer R., Wember M., Kamerling J. P., Vliegenthart J. F. Synthesis of 9-O-acetyl- and 4,9-di-O-acetyl derivatives of the methyl ester of N-acetyl-beta-D-neuraminic acid methylglycoside. Their use as models in periodate oxidation studies. Hoppe Seylers Z Physiol Chem. 1975 Oct;356(10):1575–1583. doi: 10.1515/bchm2.1975.356.2.1575. [DOI] [PubMed] [Google Scholar]
  12. Higa H. H., Paulson J. C. Sialylation of glycoprotein oligosaccharides with N-acetyl-, N-glycolyl-, and N-O-diacetylneuraminic acids. J Biol Chem. 1985 Jul 25;260(15):8838–8849. [PubMed] [Google Scholar]
  13. Holzhauser R., Faillard H., Klose W., Huber W., Stickl H., Landthaler M. Alterations of acyl-neuraminic acids on T-lymphocytes in cases of melanoma. Klin Wochenschr. 1988 Jun 15;66(12):540–544. doi: 10.1007/BF01736523. [DOI] [PubMed] [Google Scholar]
  14. Joziasse D. H., Schiphorst W. E., Van den Eijnden D. H., Van Kuik J. A., Van Halbeek H., Vliegenthart J. F. Branch specificity of bovine colostrum CMP-sialic acid: Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase. Sialylation of bi-, tri-, and tetraantennary oligosaccharides and glycopeptides of the N-acetyllactosamine type. J Biol Chem. 1987 Feb 15;262(5):2025–2033. [PubMed] [Google Scholar]
  15. Kamerling J. P., Makovitzky J., Schauer R., Vliegenthart J. F., Wember M. The nature of sialic acids in human lymphocytes. Biochim Biophys Acta. 1982 Feb 2;714(2):351–355. doi: 10.1016/0304-4165(82)90344-0. [DOI] [PubMed] [Google Scholar]
  16. Kamerling J. P., Schauer R., Shukla A. K., Stoll S., Van Halbeek H., Vliegenthart J. F. Migration of O-acetyl groups in N,O-acetylneuraminic acids. Eur J Biochem. 1987 Feb 2;162(3):601–607. doi: 10.1111/j.1432-1033.1987.tb10681.x. [DOI] [PubMed] [Google Scholar]
  17. Kniep B., Flegel W. A., Northoff H., Rieber E. P. CDw60 glycolipid antigens of human leukocytes: structural characterization and cellular distribution. Blood. 1993 Sep 15;82(6):1776–1786. [PubMed] [Google Scholar]
  18. Kniep B., Peter-Katalinić J., Flegel W., Northoff H., Rieber E. P. CDw 60 antibodies bind to acetylated forms of ganglioside GD3. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1343–1349. doi: 10.1016/0006-291x(92)90450-y. [DOI] [PubMed] [Google Scholar]
  19. Leprince C., Draves K. E., Geahlen R. L., Ledbetter J. A., Clark E. A. CD22 associates with the human surface IgM-B-cell antigen receptor complex. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3236–3240. doi: 10.1073/pnas.90.8.3236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Manzi A. E., Sjoberg E. R., Diaz S., Varki A. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells. J Biol Chem. 1990 Aug 5;265(22):13091–13103. [PubMed] [Google Scholar]
  21. Muchmore E. A., Varki A. Selective inactivation of influenza C esterase: a probe for detecting 9-O-acetylated sialic acids. Science. 1987 Jun 5;236(4806):1293–1295. doi: 10.1126/science.3589663. [DOI] [PubMed] [Google Scholar]
  22. Norgard K. E., Han H., Powell L., Kriegler M., Varki A., Varki N. M. Enhanced interaction of L-selectin with the high endothelial venule ligand via selectively oxidized sialic acids. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1068–1072. doi: 10.1073/pnas.90.3.1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pezzutto A., Dörken B., Moldenhauer G., Clark E. A. Amplification of human B cell activation by a monoclonal antibody to the B cell-specific antigen CD22, Bp 130/140. J Immunol. 1987 Jan 1;138(1):98–103. [PubMed] [Google Scholar]
  24. Pezzutto A., Rabinovitch P. S., Dörken B., Moldenhauer G., Clark E. A. Role of the CD22 human B cell antigen in B cell triggering by anti-immunoglobulin. J Immunol. 1988 Mar 15;140(6):1791–1795. [PubMed] [Google Scholar]
  25. Powell L. D., Sgroi D., Sjoberg E. R., Stamenkovic I., Varki A. Natural ligands of the B cell adhesion molecule CD22 beta carry N-linked oligosaccharides with alpha-2,6-linked sialic acids that are required for recognition. J Biol Chem. 1993 Apr 5;268(10):7019–7027. [PubMed] [Google Scholar]
  26. Powell L. D., Varki A. The oligosaccharide binding specificities of CD22 beta, a sialic acid-specific lectin of B cells. J Biol Chem. 1994 Apr 8;269(14):10628–10636. [PubMed] [Google Scholar]
  27. Rodríguez-Aparicio L. B., Luengo J. M., González-Clemente C., Reglero A. Purification and characterization of the nuclear cytidine 5'-monophosphate N-acetylneuraminic acid synthetase from rat liver. J Biol Chem. 1992 May 5;267(13):9257–9263. [PubMed] [Google Scholar]
  28. Sabesan S., Bock K., Paulson J. C. Conformational analysis of sialyloligosaccharides. Carbohydr Res. 1991 Sep 30;218:27–54. doi: 10.1016/0008-6215(91)84084-r. [DOI] [PubMed] [Google Scholar]
  29. Schulte R. J., Campbell M. A., Fischer W. H., Sefton B. M. Tyrosine phosphorylation of CD22 during B cell activation. Science. 1992 Nov 6;258(5084):1001–1004. doi: 10.1126/science.1279802. [DOI] [PubMed] [Google Scholar]
  30. Schwarting G. A., Gajewski A. Glycolipids of murine lymphocyte subpopulations. Structural characterization of thymus gangliosides. J Biol Chem. 1983 May 10;258(9):5893–5898. [PubMed] [Google Scholar]
  31. Sgroi D., Varki A., Braesch-Andersen S., Stamenkovic I. CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J Biol Chem. 1993 Apr 5;268(10):7011–7018. [PubMed] [Google Scholar]
  32. Sjoberg E. R., Manzi A. E., Khoo K. H., Dell A., Varki A. Structural and immunological characterization of O-acetylated GD2. Evidence that GD2 is an acceptor for ganglioside O-acetyltransferase in human melanoma cells. J Biol Chem. 1992 Aug 15;267(23):16200–16211. [PubMed] [Google Scholar]
  33. Sjoberg E. R., Varki A. Kinetic and spatial interrelationships between ganglioside glycosyltransferases and O-acetyltransferase(s) in human melanoma cells. J Biol Chem. 1993 May 15;268(14):10185–10196. [PubMed] [Google Scholar]
  34. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  35. Stamenkovic I., Seed B. The B-cell antigen CD22 mediates monocyte and erythrocyte adhesion. Nature. 1990 May 3;345(6270):74–77. doi: 10.1038/345074a0. [DOI] [PubMed] [Google Scholar]
  36. Stamenkovic I., Sgroi D., Aruffo A., Sy M. S., Anderson T. The B lymphocyte adhesion molecule CD22 interacts with leukocyte common antigen CD45RO on T cells and alpha 2-6 sialyltransferase, CD75, on B cells. Cell. 1991 Sep 20;66(6):1133–1144. doi: 10.1016/0092-8674(91)90036-x. [DOI] [PubMed] [Google Scholar]
  37. Stickl H., Huber W., Faillard H., Becker A., Holzhauser R., Graeff H. Veränderung der Acylneuraminsäuregehalte auf T-Lymphozyten und im Plasma bei Erkrankung an Mamma-Karzinom. Klin Wochenschr. 1991 Jan 4;69(1):5–9. doi: 10.1007/BF01649046. [DOI] [PubMed] [Google Scholar]
  38. Torres R. M., Law C. L., Santos-Argumedo L., Kirkham P. A., Grabstein K., Parkhouse R. M., Clark E. A. Identification and characterization of the murine homologue of CD22, a B lymphocyte-restricted adhesion molecule. J Immunol. 1992 Oct 15;149(8):2641–2649. [PubMed] [Google Scholar]
  39. Townsend R. R., Heller D. N., Fenselau C. C., Lee Y. C. Determination of the sialylation pattern of human fibrinogen glycopeptides with fast atom bombardment. Biochemistry. 1984 Dec 18;23(26):6389–6392. doi: 10.1021/bi00321a016. [DOI] [PubMed] [Google Scholar]
  40. Trowbridge I. S. CD45. A prototype for transmembrane protein tyrosine phosphatases. J Biol Chem. 1991 Dec 15;266(35):23517–23520. [PubMed] [Google Scholar]
  41. Varki A., Diaz S. The release and purification of sialic acids from glycoconjugates: methods to minimize the loss and migration of O-acetyl groups. Anal Biochem. 1984 Feb;137(1):236–247. doi: 10.1016/0003-2697(84)90377-4. [DOI] [PubMed] [Google Scholar]
  42. Varki A. Diversity in the sialic acids. Glycobiology. 1992 Feb;2(1):25–40. doi: 10.1093/glycob/2.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wacker H. H., Radzun H. J., Parwaresch M. R. Accessory cells in normal human and rodent lymph nodes: morphology, phenotype, and functional implications. Curr Top Pathol. 1990;84(Pt 1):193–218. doi: 10.1007/978-3-642-75519-4_8. [DOI] [PubMed] [Google Scholar]
  44. Wang X., Vertino A., Eddy R. L., Byers M. G., Jani-Sait S. N., Shows T. B., Lau J. T. Chromosome mapping and organization of the human beta-galactoside alpha 2,6-sialyltransferase gene. Differential and cell-type specific usage of upstream exon sequences in B-lymphoblastoid cells. J Biol Chem. 1993 Feb 25;268(6):4355–4361. [PubMed] [Google Scholar]
  45. Weinstein J., de Souza-e-Silva U., Paulson J. C. Sialylation of glycoprotein oligosaccharides N-linked to asparagine. Enzymatic characterization of a Gal beta 1 to 3(4)GlcNAc alpha 2 to 3 sialyltransferase and a Gal beta 1 to 4GlcNAc alpha 2 to 6 sialyltransferase from rat liver. J Biol Chem. 1982 Nov 25;257(22):13845–13853. [PubMed] [Google Scholar]
  46. Wilson G. L., Fox C. H., Fauci A. S., Kehrl J. H. cDNA cloning of the B cell membrane protein CD22: a mediator of B-B cell interactions. J Exp Med. 1991 Jan 1;173(1):137–146. doi: 10.1084/jem.173.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yednock T. A., Rosen S. D. Lymphocyte homing. Adv Immunol. 1989;44:313–378. doi: 10.1016/s0065-2776(08)60645-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES