Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Jul 2;126(2):343–352. doi: 10.1083/jcb.126.2.343

Clathrin heavy chain functions in sorting and secretion of lysosomal enzymes in Dictyostelium discoideum

PMCID: PMC2200034  PMID: 8034739

Abstract

The clathrin heavy chain is a major component of clathrin-coated vesicles that function in selective membrane traffic in eukaryotic cells. We disrupted the clathrin heavy chain gene (chcA) in Dictyostelium discoideum to generate a stable clathrin heavy chain- deficient cell line. Measurement of pinocytosis in the clathrin-minus mutant revealed a four-to five-fold deficiency in the internalization of fluid-phase markers. Once internalized, these markers recycled to the cell surface of mutant cells at wild-type rates. We also explored the involvement of clathrin heavy chain in the trafficking of lysosomal enzymes. Pulse chase analysis revealed that clathrin-minus cells processed most alpha-mannosidase to mature forms, however, approximately 20-25% of the precursor molecules remained uncleaved, were missorted, and were rapidly secreted by the constitutive secretory pathway. The remaining intracellular alpha-mannosidase was successfully targeted to mature lysosomes. Standard secretion assays showed that the rate of secretion of alpha-mannosidase was significantly less in clathrin-minus cells compared to control cells in growth medium. Interestingly, the secretion rates of another lysosomal enzyme, acid phosphatase, were similar in clathrin-minus and wild-type cells. Like wild-type cells, clathrin-minus mutants responded to starvation conditions with increased lysosomal enzyme secretion. Our study of the mutant cells provide in vivo evidence for roles for the clathrin heavy chain in (a) the internalization of fluid from the plasma membrane; (b) sorting of hydrolase precursors from the constitutive secretory pathway to the lysosomal pathway; and (c) secretion of mature hydrolases from lysosomes to the extracellular space.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett V. D., Dimond R. L. Biosynthesis of two developmentally distinct acid phosphatase isozymes in Dictyostelium discoideum. J Biol Chem. 1986 Apr 25;261(12):5355–5362. [PubMed] [Google Scholar]
  2. Brodsky F. M. Living with clathrin: its role in intracellular membrane traffic. Science. 1988 Dec 9;242(4884):1396–1402. doi: 10.1126/science.2904698. [DOI] [PubMed] [Google Scholar]
  3. Bush J. M., Cardelli J. A. Processing, transport, and secretion of the lysosomal enzyme acid phosphatase in Dictyostelium discoideum. J Biol Chem. 1989 May 5;264(13):7630–7636. [PubMed] [Google Scholar]
  4. Cardelli J. A., Bush J. M., Ebert D., Freeze H. H. Sulfated N-linked oligosaccharides affect secretion but are not essential for the transport, proteolytic processing, and sorting of lysosomal enzymes in Dictyostelium discoideum. J Biol Chem. 1990 May 25;265(15):8847–8853. [PubMed] [Google Scholar]
  5. Cardelli J. A., Golumbeski G. S., Dimond R. L. Lysosomal enzymes in Dictyostelium discoideum are transported to lysosomes at distinctly different rates. J Cell Biol. 1986 Apr;102(4):1264–1270. doi: 10.1083/jcb.102.4.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cardelli J. A., Golumbeski G. S., Woychik N. A., Ebert D. L., Mierendorf R. C., Dimond R. L. Defining the intracellular localization pathways followed by lysosomal enzymes in Dictyostelium discoideum. Methods Cell Biol. 1987;28:139–155. doi: 10.1016/s0091-679x(08)61641-6. [DOI] [PubMed] [Google Scholar]
  7. Cladaras M. H., Kaplan A. Maturation of alpha-mannosidase in Dictyostelium discoideum. Acquisition of endoglycosidase H resistance and sulfate. J Biol Chem. 1984 Nov 25;259(22):14165–14169. [PubMed] [Google Scholar]
  8. Dahms N. M., Lobel P., Kornfeld S. Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem. 1989 Jul 25;264(21):12115–12118. [PubMed] [Google Scholar]
  9. Dimond R. L., Loomis W. F. Structure and function of beta-blucosidases in Dictyostelium discoideum. J Biol Chem. 1976 May 10;251(9):2680–2687. [PubMed] [Google Scholar]
  10. Free S. J., Loomis W. F. Isolation of mutations in Dictyostelium discoideum affecting alpha-mannosidase. Biochimie. 1974;56(11-12):1525–1528. doi: 10.1016/s0300-9084(75)80276-8. [DOI] [PubMed] [Google Scholar]
  11. Freeze H. H., Wolgast D. Biosynthesis of methylphosphomannosyl residues in the oligosaccharides of Dictyostelium discoideum glycoproteins. Evidence that the methyl group is derived from methionine. J Biol Chem. 1986 Jan 5;261(1):135–141. [PubMed] [Google Scholar]
  12. Hansen S. H., Sandvig K., van Deurs B. The preendosomal compartment comprises distinct coated and noncoated endocytic vesicle populations. J Cell Biol. 1991 May;113(4):731–741. doi: 10.1083/jcb.113.4.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson G. D., Nogueira Araujo G. M. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. doi: 10.1016/0022-1759(81)90183-6. [DOI] [PubMed] [Google Scholar]
  14. Keen J. H. Clathrin and associated assembly and disassembly proteins. Annu Rev Biochem. 1990;59:415–438. doi: 10.1146/annurev.bi.59.070190.002215. [DOI] [PubMed] [Google Scholar]
  15. Klein G., Satre M. Kinetics of fluid-phase pinocytosis in Dictyostelium discoideum amoebae. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1146–1152. doi: 10.1016/s0006-291x(86)80402-8. [DOI] [PubMed] [Google Scholar]
  16. Kornfeld S., Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525. doi: 10.1146/annurev.cb.05.110189.002411. [DOI] [PubMed] [Google Scholar]
  17. Kuspa A., Loomis W. F. Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8803–8807. doi: 10.1073/pnas.89.18.8803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lobel P., Fujimoto K., Ye R. D., Griffiths G., Kornfeld S. Mutations in the cytoplasmic domain of the 275 kd mannose 6-phosphate receptor differentially alter lysosomal enzyme sorting and endocytosis. Cell. 1989 Jun 2;57(5):787–796. doi: 10.1016/0092-8674(89)90793-9. [DOI] [PubMed] [Google Scholar]
  20. Manstein D. J., Titus M. A., De Lozanne A., Spudich J. A. Gene replacement in Dictyostelium: generation of myosin null mutants. EMBO J. 1989 Mar;8(3):923–932. doi: 10.1002/j.1460-2075.1989.tb03453.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mierendorf R. C., Jr, Cardelli J. A., Dimond R. L. Pathways involved in targeting and secretion of a lysosomal enzyme in Dictyostelium discoideum. J Cell Biol. 1985 May;100(5):1777–1787. doi: 10.1083/jcb.100.5.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. O'Halloran T. J., Anderson R. G. Characterization of the clathrin heavy chain from Dictyostelium discoideum. DNA Cell Biol. 1992 May;11(4):321–330. doi: 10.1089/dna.1992.11.321. [DOI] [PubMed] [Google Scholar]
  23. O'Halloran T. J., Anderson R. G. Clathrin heavy chain is required for pinocytosis, the presence of large vacuoles, and development in Dictyostelium. J Cell Biol. 1992 Sep;118(6):1371–1377. doi: 10.1083/jcb.118.6.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Padh H., Ha J., Lavasa M., Steck T. L. A post-lysosomal compartment in Dictyostelium discoideum. J Biol Chem. 1993 Mar 25;268(9):6742–6747. [PubMed] [Google Scholar]
  25. Payne G. S., Schekman R. Clathrin: a role in the intracellular retention of a Golgi membrane protein. Science. 1989 Sep 22;245(4924):1358–1365. doi: 10.1126/science.2675311. [DOI] [PubMed] [Google Scholar]
  26. Richardson J. M., Woychik N. A., Ebert D. L., Dimond R. L., Cardelli J. A. Inhibition of early but not late proteolytic processing events leads to the missorting and oversecretion of precursor forms of lysosomal enzymes in Dictyostelium discoideum. J Cell Biol. 1988 Dec;107(6 Pt 1):2097–2107. doi: 10.1083/jcb.107.6.2097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roberts C. J., Nothwehr S. F., Stevens T. H. Membrane protein sorting in the yeast secretory pathway: evidence that the vacuole may be the default compartment. J Cell Biol. 1992 Oct;119(1):69–83. doi: 10.1083/jcb.119.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schatzle J., Bush J., Dharmawardhane S., Firtel R. A., Gomer R. H., Cardelli J. Characterization of the signal transduction pathways and cis-acting DNA sequence responsible for the transcriptional induction during growth and development of the lysosomal alpha-mannosidase gene in Dictyostelium discoideum. J Biol Chem. 1993 Sep 15;268(26):19632–19639. [PubMed] [Google Scholar]
  29. Seeger M., Payne G. S. A role for clathrin in the sorting of vacuolar proteins in the Golgi complex of yeast. EMBO J. 1992 Aug;11(8):2811–2818. doi: 10.1002/j.1460-2075.1992.tb05348.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Seeger M., Payne G. S. Selective and immediate effects of clathrin heavy chain mutations on Golgi membrane protein retention in Saccharomyces cerevisiae. J Cell Biol. 1992 Aug;118(3):531–540. doi: 10.1083/jcb.118.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Valls L. A., Hunter C. P., Rothman J. H., Stevens T. H. Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell. 1987 Mar 13;48(5):887–897. doi: 10.1016/0092-8674(87)90085-7. [DOI] [PubMed] [Google Scholar]
  32. Wood L., Kaplan A. Transit of alpha-mannosidase during its maturation in Dictyostelium discoideum. J Cell Biol. 1985 Dec;101(6):2063–2069. doi: 10.1083/jcb.101.6.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES