Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Nov 2;127(4):973–984. doi: 10.1083/jcb.127.4.973

Polyribosome targeting to microtubules: enrichment of specific mRNAs in a reconstituted microtubule preparation from sea urchin embryos

PMCID: PMC2200045  PMID: 7962079

Abstract

A subset of mRNAs, polyribosomes, and poly(A)-binding proteins copurify with microtubules from sea urchin embryos. Several lines of evidence indicate that the interaction of microtubules with ribosomes is specific: a distinct stalk-like structure appears to mediate their association; ribosomes bind to microtubules with a constant stoichiometry through several purification cycles; and the presence of ribosomes in these preparations depends on the presence of intact microtubules. Five specific mRNAs are enriched with the microtubule- bound ribosomes, indicating that translation of specific proteins may occur on the microtubule scaffolding in vivo.

Full Text

The Full Text of this article is available as a PDF (4.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ainger K., Avossa D., Morgan F., Hill S. J., Barry C., Barbarese E., Carson J. H. Transport and localization of exogenous myelin basic protein mRNA microinjected into oligodendrocytes. J Cell Biol. 1993 Oct;123(2):431–441. doi: 10.1083/jcb.123.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berleth T., Burri M., Thoma G., Bopp D., Richstein S., Frigerio G., Noll M., Nüsslein-Volhard C. The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J. 1988 Jun;7(6):1749–1756. doi: 10.1002/j.1460-2075.1988.tb03004.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drawbridge J., Grainger J. L., Winkler M. M. Identification and characterization of the poly(A)-binding proteins from the sea urchin: a quantitative analysis. Mol Cell Biol. 1990 Aug;10(8):3994–4006. doi: 10.1128/mcb.10.8.3994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dubé F., Schmidt T., Johnson C. H., Epel D. The hierarchy of requirements for an elevated intracellular pH during early development of sea urchin embryos. Cell. 1985 Mar;40(3):657–666. doi: 10.1016/0092-8674(85)90214-4. [DOI] [PubMed] [Google Scholar]
  5. Edgar B. A., Odell G. M., Schubiger G. Cytoarchitecture and the patterning of fushi tarazu expression in the Drosophila blastoderm. Genes Dev. 1987 Dec;1(10):1226–1237. doi: 10.1101/gad.1.10.1226. [DOI] [PubMed] [Google Scholar]
  6. Etter A., Bernard V., Kenzelmann M., Tobler H., Müller F. Ribosomal heterogeneity from chromatin diminution in Ascaris lumbricoides. Science. 1994 Aug 12;265(5174):954–956. doi: 10.1126/science.8052853. [DOI] [PubMed] [Google Scholar]
  7. Euteneuer U., McIntosh J. R. Polarity of some motility-related microtubules. Proc Natl Acad Sci U S A. 1981 Jan;78(1):372–376. doi: 10.1073/pnas.78.1.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fulton A. B. Spatial organization of the synthesis of cytoskeletal proteins. J Cell Biochem. 1993 Jun;52(2):148–152. doi: 10.1002/jcb.240520206. [DOI] [PubMed] [Google Scholar]
  9. Gavis E. R., Lehmann R. Localization of nanos RNA controls embryonic polarity. Cell. 1992 Oct 16;71(2):301–313. doi: 10.1016/0092-8674(92)90358-j. [DOI] [PubMed] [Google Scholar]
  10. Gibbons I. R., Rowe A. J. Dynein: A Protein with Adenosine Triphosphatase Activity from Cilia. Science. 1965 Jul 23;149(3682):424–426. doi: 10.1126/science.149.3682.424. [DOI] [PubMed] [Google Scholar]
  11. Goldman R. D., Rebhun L. I. The structure and some properties of the isolated mitotic apparatus. J Cell Sci. 1969 Jan;4(1):179–209. doi: 10.1242/jcs.4.1.179. [DOI] [PubMed] [Google Scholar]
  12. Gottlieb E. The 3' untranslated region of localized maternal messages contains a conserved motif involved in mRNA localization. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7164–7168. doi: 10.1073/pnas.89.15.7164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goustin A. S., Wilt F. H. Protein synthesis, polyribosomes, and peptide elongation in early development of Strongylocentrotus purpuratus. Dev Biol. 1981 Feb;82(1):32–40. doi: 10.1016/0012-1606(81)90426-7. [DOI] [PubMed] [Google Scholar]
  14. Grainger J. L., Winkler M. M., Shen S. S., Steinhardt R. A. Intracellular pH controls protein synthesis rate in the sea urchine egg and early embryo. Dev Biol. 1979 Feb;68(2):396–406. doi: 10.1016/0012-1606(79)90213-6. [DOI] [PubMed] [Google Scholar]
  15. Haimo L. T., Telzer B. R. Dynein-microtubule interactions: ATP-sensitive dynein binding and the structural polarity of mitotic microtubules. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):207–217. doi: 10.1101/sqb.1982.046.01.024. [DOI] [PubMed] [Google Scholar]
  16. Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hille M. B., Danilchik M. V. The protein synthetic machinery: ribosomes and cell-free systems. Methods Cell Biol. 1986;27:175–188. doi: 10.1016/s0091-679x(08)60348-9. [DOI] [PubMed] [Google Scholar]
  18. Hirokawa N., Takemura R., Hisanaga S. Cytoskeletal architecture of isolated mitotic spindle with special reference to microtubule-associated proteins and cytoplasmic dynein. J Cell Biol. 1985 Nov;101(5 Pt 1):1858–1870. doi: 10.1083/jcb.101.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Isaacs W. B., Fulton A. B. Cotranslational assembly of myosin heavy chain in developing cultured skeletal muscle. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6174–6178. doi: 10.1073/pnas.84.17.6174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Isaacs W. B., Kim I. S., Struve A., Fulton A. B. Biosynthesis of titin in cultured skeletal muscle cells. J Cell Biol. 1989 Nov;109(5):2189–2195. doi: 10.1083/jcb.109.5.2189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jeffery W. R. Localized mRNA and the egg cytoskeleton. Int Rev Cytol. 1989;119:151–195. doi: 10.1016/s0074-7696(08)60651-8. [DOI] [PubMed] [Google Scholar]
  22. Jessus C., Friederich E., Francon J., Ozon R. In vitro inhibition of tubulin assembly by a ribonucleoprotein complex associated with the free ribosome fraction isolated from Xenopus laevis oocytes: effect at the level of microtubule-associated proteins. Cell Differ. 1984 Aug;14(3):179–187. doi: 10.1016/0045-6039(84)90044-7. [DOI] [PubMed] [Google Scholar]
  23. Jessus C., Huchon D., Friederich E., Francon J., Ozon R. Interaction between rat brain microtubule associated proteins (MAPs) and free ribosomes from Xenopus oocyte: a possible mechanism for the in ovo distribution of MAPs. Cell Differ. 1984 Oct;14(4):295–301. doi: 10.1016/0045-6039(84)90018-6. [DOI] [PubMed] [Google Scholar]
  24. Johnson J. D., Epel D. Intracellular pH and activation of sea urchin eggs after fertilisation. Nature. 1976 Aug 19;262(5570):661–664. doi: 10.1038/262661a0. [DOI] [PubMed] [Google Scholar]
  25. Kislauskis E. H., Li Z., Singer R. H., Taneja K. L. Isoform-specific 3'-untranslated sequences sort alpha-cardiac and beta-cytoplasmic actin messenger RNAs to different cytoplasmic compartments. J Cell Biol. 1993 Oct;123(1):165–172. doi: 10.1083/jcb.123.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Lake J. A. Evolving ribosome structure: domains in archaebacteria, eubacteria, eocytes and eukaryotes. Annu Rev Biochem. 1985;54:507–530. doi: 10.1146/annurev.bi.54.070185.002451. [DOI] [PubMed] [Google Scholar]
  28. Lenk R., Ransom L., Kaufmann Y., Penman S. A cytoskeletal structure with associated polyribosomes obtained from HeLa cells. Cell. 1977 Jan;10(1):67–78. doi: 10.1016/0092-8674(77)90141-6. [DOI] [PubMed] [Google Scholar]
  29. Loomis P. A., Howard T. H., Castleberry R. P., Binder L. I. Identification of nuclear tau isoforms in human neuroblastoma cells. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8422–8426. doi: 10.1073/pnas.87.21.8422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lye R. J., Porter M. E., Scholey J. M., McIntosh J. R. Identification of a microtubule-based cytoplasmic motor in the nematode C. elegans. Cell. 1987 Oct 23;51(2):309–318. doi: 10.1016/0092-8674(87)90157-7. [DOI] [PubMed] [Google Scholar]
  31. Macdonald P. M., Kerr K., Smith J. L., Leask A. RNA regulatory element BLE1 directs the early steps of bicoid mRNA localization. Development. 1993 Aug;118(4):1233–1243. doi: 10.1242/dev.118.4.1233. [DOI] [PubMed] [Google Scholar]
  32. Macdonald P. M., Struhl G. cis-acting sequences responsible for anterior localization of bicoid mRNA in Drosophila embryos. Nature. 1988 Dec 8;336(6199):595–598. doi: 10.1038/336595a0. [DOI] [PubMed] [Google Scholar]
  33. Martin K. A., Miller O. L., Jr Polysome structure in sea urchin eggs and embryos: an electron microscopic analysis. Dev Biol. 1983 Aug;98(2):338–348. doi: 10.1016/0012-1606(83)90364-0. [DOI] [PubMed] [Google Scholar]
  34. Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984 Nov 15;312(5991):237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
  35. Moon R. T., Nicosia R. F., Olsen C., Hille M. B., Jeffery W. R. The cytoskeletal framework of sea urchin eggs and embryos: developmental changes in the association of messenger RNA. Dev Biol. 1983 Feb;95(2):447–458. doi: 10.1016/0012-1606(83)90046-5. [DOI] [PubMed] [Google Scholar]
  36. Mowry K. L., Melton D. A. Vegetal messenger RNA localization directed by a 340-nt RNA sequence element in Xenopus oocytes. Science. 1992 Feb 21;255(5047):991–994. doi: 10.1126/science.1546297. [DOI] [PubMed] [Google Scholar]
  37. Pachter J. S. Association of mRNA with the cytoskeletal framework: its role in the regulation of gene expression. Crit Rev Eukaryot Gene Expr. 1992;2(1):1–18. [PubMed] [Google Scholar]
  38. Papasozomenos S. C., Binder L. I. Phosphorylation determines two distinct species of Tau in the central nervous system. Cell Motil Cytoskeleton. 1987;8(3):210–226. doi: 10.1002/cm.970080303. [DOI] [PubMed] [Google Scholar]
  39. Paschal B. M., Shpetner H. S., Vallee R. B. MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J Cell Biol. 1987 Sep;105(3):1273–1282. doi: 10.1083/jcb.105.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
  41. Pokrywka N. J., Stephenson E. C. Microtubules mediate the localization of bicoid RNA during Drosophila oogenesis. Development. 1991 Sep;113(1):55–66. doi: 10.1242/dev.113.1.55. [DOI] [PubMed] [Google Scholar]
  42. Raff J. W., Whitfield W. G., Glover D. M. Two distinct mechanisms localise cyclin B transcripts in syncytial Drosophila embryos. Development. 1990 Dec;110(4):1249–1261. doi: 10.1242/dev.110.4.1249. [DOI] [PubMed] [Google Scholar]
  43. Ramagopal S. Are eukaryotic ribosomes heterogeneous? Affirmations on the horizon. Biochem Cell Biol. 1992 May;70(5):269–272. doi: 10.1139/o92-042. [DOI] [PubMed] [Google Scholar]
  44. Raymond M. N., Foucault G., Renner M., Pudles J. Isolation of a 50 kDa polypeptide from the detergent-resistant unfertilized sea urchin egg cytomatrix and evidence for its change in organization during mitosis. Eur J Cell Biol. 1988 Feb;45(2):302–310. [PubMed] [Google Scholar]
  45. Rebhun L. I., Palazzo R. E. In vitro reactivation of anaphase B in isolated spindles of the sea urchin egg. Cell Motil Cytoskeleton. 1988;10(1-2):197–209. doi: 10.1002/cm.970100124. [DOI] [PubMed] [Google Scholar]
  46. Ris H. The cytoplasmic filament system in critical point-dried whole mounts and plastic-embedded sections. J Cell Biol. 1985 May;100(5):1474–1487. doi: 10.1083/jcb.100.5.1474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sachs A. B. Messenger RNA degradation in eukaryotes. Cell. 1993 Aug 13;74(3):413–421. doi: 10.1016/0092-8674(93)80043-e. [DOI] [PubMed] [Google Scholar]
  48. Salmon E. D. Mitotic spindles isolated from sea urchin eggs with EGTA lysis buffers. Methods Cell Biol. 1982;25(Pt B):69–105. doi: 10.1016/s0091-679x(08)61421-1. [DOI] [PubMed] [Google Scholar]
  49. Salmon E. D., Segall R. R. Calcium-labile mitotic spindles isolated from sea urchin eggs (Lytechinus variegatus). J Cell Biol. 1980 Aug;86(2):355–365. doi: 10.1083/jcb.86.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Schatten G., Bestor T., Balczon R., Henson J., Schatten H. Intracellular pH shift leads to microtubule assembly and microtubule-mediated motility during sea urchin fertilization: correlations between elevated intracellular pH and microtubule activity and depressed intracellular pH and microtubule disassembly. Eur J Cell Biol. 1985 Jan;36(1):116–127. [PubMed] [Google Scholar]
  51. Schatten G. The supramolecular organization of the cytoskeleton during fertilization. Subcell Biochem. 1984;10:359–453. doi: 10.1007/978-1-4613-2709-7_6. [DOI] [PubMed] [Google Scholar]
  52. Schwartz S. P., Aisenthal L., Elisha Z., Oberman F., Yisraeli J. K. A 69-kDa RNA-binding protein from Xenopus oocytes recognizes a common motif in two vegetally localized maternal mRNAs. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11895–11899. doi: 10.1073/pnas.89.24.11895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Silver R. B., Cole R. D., Cande W. Z. Isolation of mitotic apparatus containing vesicles with calcium sequestration activity. Cell. 1980 Feb;19(2):505–516. doi: 10.1016/0092-8674(80)90525-5. [DOI] [PubMed] [Google Scholar]
  54. Singer R. H. The cytoskeleton and mRNA localization. Curr Opin Cell Biol. 1992 Feb;4(1):15–19. doi: 10.1016/0955-0674(92)90053-f. [DOI] [PubMed] [Google Scholar]
  55. St Johnston D., Driever W., Berleth T., Richstein S., Nüsslein-Volhard C. Multiple steps in the localization of bicoid RNA to the anterior pole of the Drosophila oocyte. Development. 1989;107 (Suppl):13–19. doi: 10.1242/dev.107.Supplement.13. [DOI] [PubMed] [Google Scholar]
  56. Steffen W., Linck R. W. Evidence for a non-tubulin spindle matrix and for spindle components immunologically related to tektin filaments. J Cell Sci. 1992 Apr;101(Pt 4):809–822. doi: 10.1242/jcs.101.4.809. [DOI] [PubMed] [Google Scholar]
  57. Steward O., Banker G. A. Getting the message from the gene to the synapse: sorting and intracellular transport of RNA in neurons. Trends Neurosci. 1992 May;15(5):180–186. doi: 10.1016/0166-2236(92)90170-d. [DOI] [PubMed] [Google Scholar]
  58. Suprenant K. A., Dean K., McKee J., Hake S. EMAP, an echinoderm microtubule-associated protein found in microtubule-ribosome complexes. J Cell Sci. 1993 Feb;104(2):445–450. doi: 10.1242/jcs.104.2.445. [DOI] [PubMed] [Google Scholar]
  59. Suprenant K. A., Marsh J. C. Temperature and pH govern the self-assembly of microtubules from unfertilized sea-urchin egg extracts. J Cell Sci. 1987 Feb;87(Pt 1):71–84. doi: 10.1242/jcs.87.1.71. [DOI] [PubMed] [Google Scholar]
  60. Suprenant K. A. Microtubules, ribosomes, and RNA: evidence for cytoplasmic localization and translational regulation. Cell Motil Cytoskeleton. 1993;25(1):1–9. doi: 10.1002/cm.970250102. [DOI] [PubMed] [Google Scholar]
  61. Suprenant K. A., Rebhun L. I. Assembly of unfertilized sea urchin egg tubulin at physiological temperatures. J Biol Chem. 1983 Apr 10;258(7):4518–4525. [PubMed] [Google Scholar]
  62. Suprenant K. A., Tempero L. B., Hammer L. E. Association of ribosomes with in vitro assembled microtubules. Cell Motil Cytoskeleton. 1989;14(3):401–415. doi: 10.1002/cm.970140310. [DOI] [PubMed] [Google Scholar]
  63. Theodorakis N. G., Cleveland D. W. Physical evidence for cotranslational regulation of beta-tubulin mRNA degradation. Mol Cell Biol. 1992 Feb;12(2):791–799. doi: 10.1128/mcb.12.2.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Vale R. D., Reese T. S., Sheetz M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985 Aug;42(1):39–50. doi: 10.1016/s0092-8674(85)80099-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Valentine R. C., Shapiro B. M., Stadtman E. R. Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry. 1968 Jun;7(6):2143–2152. doi: 10.1021/bi00846a017. [DOI] [PubMed] [Google Scholar]
  67. Vallee R. B., Collins C. A. Purification of microtubules and microtubule-associated proteins from sea urchin eggs and cultured mammalian cells using taxol, and use of exogenous taxol-stabilized brain microtubules for purifying microtubule-associated proteins. Methods Enzymol. 1986;134:116–127. doi: 10.1016/0076-6879(86)34080-1. [DOI] [PubMed] [Google Scholar]
  68. Verschoor A., Frank J. Three-dimensional structure of the mammalian cytoplasmic ribosome. J Mol Biol. 1990 Aug 5;214(3):737–749. doi: 10.1016/0022-2836(90)90289-X. [DOI] [PubMed] [Google Scholar]
  69. Weatherbee J. A., Luftig R. B., Weihing R. R. Binding of adenovirus to microtubules. II. Depletion of high-molecular-weight microtubule-associated protein content reduces specificity of in vitro binding. J Virol. 1977 Feb;21(2):732–742. doi: 10.1128/jvi.21.2.732-742.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Wilhelm J. E., Vale R. D. RNA on the move: the mRNA localization pathway. J Cell Biol. 1993 Oct;123(2):269–274. doi: 10.1083/jcb.123.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Winkler M. M., Nelson E. M., Lashbrook C., Hershey J. W. Multiple levels of regulation of protein synthesis at fertilization in sea urchin eggs. Dev Biol. 1985 Feb;107(2):290–300. doi: 10.1016/0012-1606(85)90312-4. [DOI] [PubMed] [Google Scholar]
  72. Wolosewick J. J., Porter K. R. Stereo high-voltage electron microscopy of whole cells of the human diploid line, WI-38. Am J Anat. 1976 Nov;147(3):303–323. doi: 10.1002/aja.1001470305. [DOI] [PubMed] [Google Scholar]
  73. Yisraeli J. K., Sokol S., Melton D. A. A two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA. Development. 1990 Feb;108(2):289–298. doi: 10.1242/dev.108.2.289. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES