Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Nov 2;127(4):893–902. doi: 10.1083/jcb.127.4.893

Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA

PMCID: PMC2200046  PMID: 7962074

Abstract

Mitochondrial heat shock protein 70 (mt-Hsp70) has been shown to play an important role in facilitating import into, as well as folding and assembly of nuclear-encoded proteins in the mitochondrial matrix. Here, we describe a role for mt-Hsp70 in chaperoning proteins encoded by mitochondrial DNA and synthesized within mitochondria. The availability of mt-Hsp70 function influences the pattern of proteins synthesized in mitochondria of yeast both in vivo and in vitro. In particular, we show that mt-Hsp70 acts in maintaining the var1 protein, the only mitochondrially encoded subunit of mitochondrial ribosomes, in an assembly competent state, especially under heat stress conditions. Furthermore, mt-Hsp70 helps to facilitate assembly of mitochondrially encoded subunits of the ATP synthase complex. By interacting with the ATP-ase 9 oligomer, mt-Hsp70 promotes assembly of ATP-ase 6, and thereby protects the latter protein from proteolytic degradation. Thus mt-Hsp70 by acting as a chaperone for proteins encoded by the mitochondrial DNA, has a critical role in the assembly of supra- molecular complexes.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borst P., Grivell L. A. The mitochondrial genome of yeast. Cell. 1978 Nov;15(3):705–723. doi: 10.1016/0092-8674(78)90257-x. [DOI] [PubMed] [Google Scholar]
  2. Craig E. A., Kramer J., Shilling J., Werner-Washburne M., Holmes S., Kosic-Smithers J., Nicolet C. M. SSC1, an essential member of the yeast HSP70 multigene family, encodes a mitochondrial protein. Mol Cell Biol. 1989 Jul;9(7):3000–3008. doi: 10.1128/mcb.9.7.3000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cyr D. M., Stuart R. A., Neupert W. A matrix ATP requirement for presequence translocation across the inner membrane of mitochondria. J Biol Chem. 1993 Nov 15;268(32):23751–23754. [PubMed] [Google Scholar]
  4. Daum G., Böhni P. C., Schatz G. Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem. 1982 Nov 10;257(21):13028–13033. [PubMed] [Google Scholar]
  5. Douglas M. G., Butow R. A. Variant forms of mitochondrial translation products in yeast: evidence for location of determinants on mitochondrial DNA. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1083–1086. doi: 10.1073/pnas.73.4.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ellis R. J. The general concept of molecular chaperones. Philos Trans R Soc Lond B Biol Sci. 1993 Mar 29;339(1289):257–261. doi: 10.1098/rstb.1993.0023. [DOI] [PubMed] [Google Scholar]
  7. Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  8. Glick B. S., Wachter C., Reid G. A., Schatz G. Import of cytochrome b2 to the mitochondrial intermembrane space: the tightly folded heme-binding domain makes import dependent upon matrix ATP. Protein Sci. 1993 Nov;2(11):1901–1917. doi: 10.1002/pro.5560021112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gray R. E., Grasso D. G., Maxwell R. J., Finnegan P. M., Nagley P., Devenish R. J. Identification of a 66 KDa protein associated with yeast mitochondrial ATP synthase as heat shock protein hsp60. FEBS Lett. 1990 Jul 30;268(1):265–268. doi: 10.1016/0014-5793(90)81024-i. [DOI] [PubMed] [Google Scholar]
  10. Grivell L. A. Nucleo-mitochondrial interactions in yeast mitochondrial biogenesis. Eur J Biochem. 1989 Jul 1;182(3):477–493. doi: 10.1111/j.1432-1033.1989.tb14854.x. [DOI] [PubMed] [Google Scholar]
  11. Groot G. S., Mason T. L., Van Harten-Loosbroek N. Var1 is associated with the small ribosomal subunit of mitochondrial ribosomes in yeast. Mol Gen Genet. 1979 Jul 24;174(3):339–342. doi: 10.1007/BF00267808. [DOI] [PubMed] [Google Scholar]
  12. Hadikusumo R. G., Meltzer S., Choo W. M., Jean-François M. J., Linnane A. W., Marzuki S. The definition of mitochondrial H+ ATPase assembly defects in mit- mutants of Saccharomyces cerevisiae with a monoclonal antibody to the enzyme complex as an assembly probe. Biochim Biophys Acta. 1988 Mar 30;933(1):212–222. doi: 10.1016/0005-2728(88)90072-2. [DOI] [PubMed] [Google Scholar]
  13. Hartl F. U., Hlodan R., Langer T. Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends Biochem Sci. 1994 Jan;19(1):20–25. doi: 10.1016/0968-0004(94)90169-4. [DOI] [PubMed] [Google Scholar]
  14. Kang P. J., Ostermann J., Shilling J., Neupert W., Craig E. A., Pfanner N. Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature. 1990 Nov 8;348(6297):137–143. doi: 10.1038/348137a0. [DOI] [PubMed] [Google Scholar]
  15. Kutejová E., Durcová G., Surovková E., Kuzela S. Yeast mitochondrial ATP-dependent protease: purification and comparison with the homologous rat enzyme and the bacterial ATP-dependent protease La. FEBS Lett. 1993 Aug 23;329(1-2):47–50. doi: 10.1016/0014-5793(93)80190-6. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Langer T., Lu C., Echols H., Flanagan J., Hayer M. K., Hartl F. U. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature. 1992 Apr 23;356(6371):683–689. doi: 10.1038/356683a0. [DOI] [PubMed] [Google Scholar]
  18. Lindquist S., Craig E. A. The heat-shock proteins. Annu Rev Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. [DOI] [PubMed] [Google Scholar]
  19. Maheshwari K. K., Marzuki S. Defective assembly of the mitochondrial ribosomes in yeast cells grown in the presence of mitochondrial protein synthesis inhibitors. Biochim Biophys Acta. 1985 Apr 19;824(4):273–283. doi: 10.1016/0167-4781(85)90033-8. [DOI] [PubMed] [Google Scholar]
  20. Manning-Krieg U. C., Scherer P. E., Schatz G. Sequential action of mitochondrial chaperones in protein import into the matrix. EMBO J. 1991 Nov;10(11):3273–3280. doi: 10.1002/j.1460-2075.1991.tb04891.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McKee E. E., Poyton R. O. Mitochondrial gene expression in saccharomyces cerevisiae. I. Optimal conditions for protein synthesis in isolated mitochondria. J Biol Chem. 1984 Jul 25;259(14):9320–9331. [PubMed] [Google Scholar]
  22. Ostermann J., Voos W., Kang P. J., Craig E. A., Neupert W., Pfanner N. Precursor proteins in transit through mitochondrial contact sites interact with hsp70 in the matrix. FEBS Lett. 1990 Dec 17;277(1-2):281–284. doi: 10.1016/0014-5793(90)80865-g. [DOI] [PubMed] [Google Scholar]
  23. Poyton R. O., Duhl D. M., Clarkson G. H. Protein export from the mitochondrial matrix. Trends Cell Biol. 1992 Dec;2(12):369–375. doi: 10.1016/0962-8924(92)90049-s. [DOI] [PubMed] [Google Scholar]
  24. Prasad T. K., Hack E., Hallberg R. L. Function of the maize mitochondrial chaperonin hsp60: specific association between hsp60 and newly synthesized F1-ATPase alpha subunits. Mol Cell Biol. 1990 Aug;10(8):3979–3986. doi: 10.1128/mcb.10.8.3979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rowley N., Prip-Buus C., Westermann B., Brown C., Schwarz E., Barrell B., Neupert W. Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell. 1994 Apr 22;77(2):249–259. doi: 10.1016/0092-8674(94)90317-4. [DOI] [PubMed] [Google Scholar]
  26. Stuart R. A., Cyr D. M., Craig E. A., Neupert W. Mitochondrial molecular chaperones: their role in protein translocation. Trends Biochem Sci. 1994 Feb;19(2):87–92. doi: 10.1016/0968-0004(94)90041-8. [DOI] [PubMed] [Google Scholar]
  27. Stuart R. A., Gruhler A., van der Klei I., Guiard B., Koll H., Neupert W. The requirement of matrix ATP for the import of precursor proteins into the mitochondrial matrix and intermembrane space. Eur J Biochem. 1994 Feb 15;220(1):9–18. doi: 10.1111/j.1432-1033.1994.tb18593.x. [DOI] [PubMed] [Google Scholar]
  28. Terpstra P., Butow R. A. The role of var1 in the assembly of yeast mitochondrial ribosomes. J Biol Chem. 1979 Dec 25;254(24):12662–12669. [PubMed] [Google Scholar]
  29. Terpstra P., Zanders E., Butow R. A. The association of var1 with the 38 S mitochondrial ribosomal subunit in yeast. J Biol Chem. 1979 Dec 25;254(24):12653–12661. [PubMed] [Google Scholar]
  30. Tzagoloff A., Akai A. Assembly of the mitochondrial membrane system. 8. Properties of the products of mitochondrial protein synthesis in yeast. J Biol Chem. 1972 Oct 25;247(20):6517–6523. [PubMed] [Google Scholar]
  31. Tzagoloff A., Dieckmann C. L. PET genes of Saccharomyces cerevisiae. Microbiol Rev. 1990 Sep;54(3):211–225. doi: 10.1128/mr.54.3.211-225.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tzagoloff A., Myers A. M. Genetics of mitochondrial biogenesis. Annu Rev Biochem. 1986;55:249–285. doi: 10.1146/annurev.bi.55.070186.001341. [DOI] [PubMed] [Google Scholar]
  33. Tzagoloff A., Rubin M. S., Sierra M. F. Biosynthesis of mitochondrial enzymes. Biochim Biophys Acta. 1973 Feb 12;301(1):71–104. doi: 10.1016/0304-4173(73)90013-x. [DOI] [PubMed] [Google Scholar]
  34. Van Dyck L., Pearce D. A., Sherman F. PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. J Biol Chem. 1994 Jan 7;269(1):238–242. [PubMed] [Google Scholar]
  35. Voos W., Gambill B. D., Guiard B., Pfanner N., Craig E. A. Presequence and mature part of preproteins strongly influence the dependence of mitochondrial protein import on heat shock protein 70 in the matrix. J Cell Biol. 1993 Oct;123(1):119–126. doi: 10.1083/jcb.123.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES