Abstract
We examined the role of innervation on acetylcholinesterase (AChE) gene expression within mammalian skeletal muscle fibers. First, we showed the selective accumulation of AChE mRNAs within the junctional vs extrajunctional sarcoplasm of adult muscle fibers using a quantitative reverse transcription PCR assay and demonstrated by in situ hybridization experiments that AChE transcripts are concentrated immediately beneath the postsynaptic membrane of the neuromuscular junction. Next, we determined the influence of nerve-evoked activity vs putative trophic factors on the synaptic accumulation of AChE mRNA levels in muscle fibers paralyzed by either surgical denervation or selective blockage of nerve action potentials with chronic superfusion of tetrodotoxin. Our results indicated that muscle paralysis leads to a marked decrease in AChE transcripts from the postsynaptic sarcoplasm, yet the extent of this decrease is less pronounced after tetrodotoxin inactivation than after denervation. These results suggest that although nerve-evoked activity per se appears a key regulator of AChE mRNA levels, the integrity of the synaptic structure or the release of putative trophic factors contribute to maintaining the synaptic accumulation of AChE transcripts at adult neuromuscular synapses. Furthermore, the pronounced downregulation of AChE transcripts in paralyzed muscles stands in sharp contrast to the well-documented increase in nicotinic acetylcholine receptor mRNAs under these conditions, and indicates that expression of the genes encoding these two synaptic proteins are subjected to different regulatory mechanisms in adult muscle fibers in vivo.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahn A. H., Kunkel L. M. The structural and functional diversity of dystrophin. Nat Genet. 1993 Apr;3(4):283–291. doi: 10.1038/ng0493-283. [DOI] [PubMed] [Google Scholar]
- Alderson K., Pestronk A., Yee W. C., Drachman D. B. Silver cholinesterase immunocytochemistry: a new neuromuscular junction stain. Muscle Nerve. 1989 Jan;12(1):9–14. doi: 10.1002/mus.880120103. [DOI] [PubMed] [Google Scholar]
- Bacou F., Vigneron P., Massoulié J. Acetylcholinesterase forms in fast and slow rabbit muscle. Nature. 1982 Apr 15;296(5858):661–664. doi: 10.1038/296661a0. [DOI] [PubMed] [Google Scholar]
- Brenner H. R., Witzemann V., Sakmann B. Imprinting of acetylcholine receptor messenger RNA accumulation in mammalian neuromuscular synapses. Nature. 1990 Apr 5;344(6266):544–547. doi: 10.1038/344544a0. [DOI] [PubMed] [Google Scholar]
- Brimijoin S. Molecular forms of acetylcholinesterase in brain, nerve and muscle: nature, localization and dynamics. Prog Neurobiol. 1983;21(4):291–322. doi: 10.1016/0301-0082(83)90015-1. [DOI] [PubMed] [Google Scholar]
- Butler I. J., Drachman D. B., Goldberg A. M. The effect of disuse on cholinergic enzymes. J Physiol. 1978 Jan;274:593–600. doi: 10.1113/jphysiol.1978.sp012168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cangiano A., Lømo T., Lutzemberger L., Sveen O. Effects of chronic nerve conduction block on formation of neuromuscular junctions and junctional AChE in the rat. Acta Physiol Scand. 1980 Jul;109(3):283–296. doi: 10.1111/j.1748-1716.1980.tb06599.x. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Collins P. L., Younkin S. G. Effect of denervation on the molecular forms of acetylcholinesterase in rat diaphragm. J Biol Chem. 1982 Nov 25;257(22):13638–13644. [PubMed] [Google Scholar]
- Davey B., Younkin L. H., Younkin S. G. Neural control of skeletal muscle cholinesterase: a study using organ-cultured rat muscle. J Physiol. 1979 Apr;289:501–515. doi: 10.1113/jphysiol.1979.sp012749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drachman D. B. Neurotrophic regulation of muscle cholinesterase: effects of botulinum toxin and denervation. J Physiol. 1972 Nov;226(3):619–627. doi: 10.1113/jphysiol.1972.sp010000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duclert A., Savatier N., Changeux J. P. An 83-nucleotide promoter of the acetylcholine receptor epsilon-subunit gene confers preferential synaptic expression in mouse muscle. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3043–3047. doi: 10.1073/pnas.90.7.3043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
- Fambrough D. M. Control of acetylcholine receptors in skeletal muscle. Physiol Rev. 1979 Jan;59(1):165–227. doi: 10.1152/physrev.1979.59.1.165. [DOI] [PubMed] [Google Scholar]
- Fernandez H. L., Donoso J. A. Exercise selectively increases G4 AChe activity in fast-twitch muscle. J Appl Physiol (1985) 1988 Nov;65(5):2245–2252. doi: 10.1152/jappl.1988.65.5.2245. [DOI] [PubMed] [Google Scholar]
- Fernandez H. L., Duell M. J., Festoff B. W. Neurotrophic control of 16S acetylcholinesterase at the vertebrate neuromuscular junction. J Neurobiol. 1979 Sep;10(5):441–454. doi: 10.1002/neu.480100503. [DOI] [PubMed] [Google Scholar]
- Fernandez H. L., Patterson M. R., Duell M. J. Neurotrophic control of 16S acetylcholinesterase from mammalian skeletal muscle in organ culture. J Neurobiol. 1980 Nov;11(6):557–570. doi: 10.1002/neu.480110606. [DOI] [PubMed] [Google Scholar]
- Fontaine B., Changeux J. P. Localization of nicotinic acetylcholine receptor alpha-subunit transcripts during myogenesis and motor endplate development in the chick. J Cell Biol. 1989 Mar;108(3):1025–1037. doi: 10.1083/jcb.108.3.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fontaine B., Sassoon D., Buckingham M., Changeux J. P. Detection of the nicotinic acetylcholine receptor alpha-subunit mRNA by in situ hybridization at neuromuscular junctions of 15-day-old chick striated muscles. EMBO J. 1988 Mar;7(3):603–609. doi: 10.1002/j.1460-2075.1988.tb02853.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuentes M. E., Taylor P. Control of acetylcholinesterase gene expression during myogenesis. Neuron. 1993 Apr;10(4):679–687. doi: 10.1016/0896-6273(93)90169-r. [DOI] [PubMed] [Google Scholar]
- Gisiger V., Stephens H. R. Localization of the pool of G4 acetylcholinesterase characterizing fast muscles and its alteration in murine muscular dystrophy. J Neurosci Res. 1988;19(1):62–78. doi: 10.1002/jnr.490190110. [DOI] [PubMed] [Google Scholar]
- Goldman D., Staple J. Spatial and temporal expression of acetylcholine receptor RNAs in innervated and denervated rat soleus muscle. Neuron. 1989 Aug;3(2):219–228. doi: 10.1016/0896-6273(89)90035-4. [DOI] [PubMed] [Google Scholar]
- Hall Z. W. Multiple forms of acetylcholinesterase and their distribution in endplate and non-endplate regions of rat diaphragm muscle. J Neurobiol. 1973;4(4):343–361. doi: 10.1002/neu.480040404. [DOI] [PubMed] [Google Scholar]
- Hall Z. W., Sanes J. R. Synaptic structure and development: the neuromuscular junction. Cell. 1993 Jan;72 (Suppl):99–121. doi: 10.1016/s0092-8674(05)80031-5. [DOI] [PubMed] [Google Scholar]
- Ho-Kim M. A., Rogers P. A. Quantitative analysis of dystrophin in fast- and slow-twitch mammalian skeletal muscle. FEBS Lett. 1992 Jun 15;304(2-3):187–191. doi: 10.1016/0014-5793(92)80615-n. [DOI] [PubMed] [Google Scholar]
- Jasmin B. J., Cartaud J., Bornens M., Changeux J. P. Golgi apparatus in chick skeletal muscle: changes in its distribution during end plate development and after denervation. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7218–7222. doi: 10.1073/pnas.86.18.7218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jasmin B. J., Changeux J. P., Cartaud J. Compartmentalization of cold-stable and acetylated microtubules in the subsynaptic domain of chick skeletal muscle fibre. Nature. 1990 Apr 12;344(6267):673–675. doi: 10.1038/344673a0. [DOI] [PubMed] [Google Scholar]
- Jasmin B. J., Gardiner P. F., Gisiger V. Muscle acetylcholinesterase adapts to compensatory overload by a general increase in its molecular forms. J Appl Physiol (1985) 1991 Jun;70(6):2485–2489. doi: 10.1152/jappl.1991.70.6.2485. [DOI] [PubMed] [Google Scholar]
- Jasmin B. J., Gisiger V. Regulation by exercise of the pool of G4 acetylcholinesterase characterizing fast muscles: opposite effect of running training in antagonist muscles. J Neurosci. 1990 May;10(5):1444–1454. doi: 10.1523/JNEUROSCI.10-05-01444.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jasmin B. J., Lee R. K., Rotundo R. L. Compartmentalization of acetylcholinesterase mRNA and enzyme at the vertebrate neuromuscular junction. Neuron. 1993 Sep;11(3):467–477. doi: 10.1016/0896-6273(93)90151-g. [DOI] [PubMed] [Google Scholar]
- KARNOVSKY M. J., ROOTS L. A "DIRECT-COLORING" THIOCHOLINE METHOD FOR CHOLINESTERASES. J Histochem Cytochem. 1964 Mar;12:219–221. doi: 10.1177/12.3.219. [DOI] [PubMed] [Google Scholar]
- Katz B., Miledi R. Tetrodotoxin and neuromuscular transmission. Proc R Soc Lond B Biol Sci. 1967 Jan 31;167(1006):8–22. doi: 10.1098/rspb.1967.0010. [DOI] [PubMed] [Google Scholar]
- Klarsfeld A., Bessereau J. L., Salmon A. M., Triller A., Babinet C., Changeux J. P. An acetylcholine receptor alpha-subunit promoter conferring preferential synaptic expression in muscle of transgenic mice. EMBO J. 1991 Mar;10(3):625–632. doi: 10.1002/j.1460-2075.1991.tb07990.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klarsfeld A. Coordinate control of synaptic protein expression at the neuromuscular junction. Biochimie. 1987 May;69(5):433–437. doi: 10.1016/0300-9084(87)90080-0. [DOI] [PubMed] [Google Scholar]
- Lavoie P. A., Collier B., Tenehouse A. Comparison of alpha-bungarotoxin binding to skeletal muscles after inactivity or denervation. Nature. 1976 Mar 25;260(5549):349–350. doi: 10.1038/260349a0. [DOI] [PubMed] [Google Scholar]
- Legay C., Bon S., Massoulié J. Expression of a cDNA encoding the glycolipid-anchored form of rat acetylcholinesterase. FEBS Lett. 1993 Jan 4;315(2):163–166. doi: 10.1016/0014-5793(93)81155-s. [DOI] [PubMed] [Google Scholar]
- Legay C., Bon S., Vernier P., Coussen F., Massoulié J. Cloning and expression of a rat acetylcholinesterase subunit: generation of multiple molecular forms and complementarity with a Torpedo collagenic subunit. J Neurochem. 1993 Jan;60(1):337–346. doi: 10.1111/j.1471-4159.1993.tb05856.x. [DOI] [PubMed] [Google Scholar]
- Li Y., Camp S., Rachinsky T. L., Getman D., Taylor P. Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression. J Biol Chem. 1991 Dec 5;266(34):23083–23090. [PubMed] [Google Scholar]
- Lømo T., Massoulié J., Vigny M. Stimulation of denervated rat soleus muscle with fast and slow activity patterns induces different expression of acetylcholinesterase molecular forms. J Neurosci. 1985 May;5(5):1180–1187. doi: 10.1523/JNEUROSCI.05-05-01180.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massoulié J., Bon S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu Rev Neurosci. 1982;5:57–106. doi: 10.1146/annurev.ne.05.030182.000421. [DOI] [PubMed] [Google Scholar]
- Massoulié J., Pezzementi L., Bon S., Krejci E., Vallette F. M. Molecular and cellular biology of cholinesterases. Prog Neurobiol. 1993 Jul;41(1):31–91. doi: 10.1016/0301-0082(93)90040-y. [DOI] [PubMed] [Google Scholar]
- Matsumura K., Campbell K. P. Dystrophin-glycoprotein complex: its role in the molecular pathogenesis of muscular dystrophies. Muscle Nerve. 1994 Jan;17(1):2–15. doi: 10.1002/mus.880170103. [DOI] [PubMed] [Google Scholar]
- Maulet Y., Camp S., Gibney G., Rachinsky T. L., Ekström T. J., Taylor P. Single gene encodes glycophospholipid-anchored and asymmetric acetylcholinesterase forms: alternative coding exons contain inverted repeat sequences. Neuron. 1990 Feb;4(2):289–301. doi: 10.1016/0896-6273(90)90103-m. [DOI] [PubMed] [Google Scholar]
- Merlie J. P., Isenberg K. E., Russell S. D., Sanes J. R. Denervation supersensitivity in skeletal muscle: analysis with a cloned cDNA probe. J Cell Biol. 1984 Jul;99(1 Pt 1):332–335. doi: 10.1083/jcb.99.1.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merlie J. P., Sanes J. R. Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres. Nature. 1985 Sep 5;317(6032):66–68. doi: 10.1038/317066a0. [DOI] [PubMed] [Google Scholar]
- Michel R. N., Cowper G., Chi M. M., Manchester J. K., Falter H., Lowry O. H. Effects of tetrodotoxin-induced neural inactivation on single muscle fiber metabolic enzymes. Am J Physiol. 1994 Jul;267(1 Pt 1):C55–C66. doi: 10.1152/ajpcell.1994.267.1.C55. [DOI] [PubMed] [Google Scholar]
- Michel R. N., Gardiner P. F. To what extent is hindlimb suspension a model of disuse? Muscle Nerve. 1990 Jul;13(7):646–653. doi: 10.1002/mus.880130714. [DOI] [PubMed] [Google Scholar]
- Pestronk A., Drachman D. B., Griffin J. W. Effect of muscle disuse on acetylcholine receptors. Nature. 1976 Mar 25;260(5549):352–353. doi: 10.1038/260352a0. [DOI] [PubMed] [Google Scholar]
- Rachinsky T. L., Camp S., Li Y., Ekström T. J., Newton M., Taylor P. Molecular cloning of mouse acetylcholinesterase: tissue distribution of alternatively spliced mRNA species. Neuron. 1990 Sep;5(3):317–327. doi: 10.1016/0896-6273(90)90168-f. [DOI] [PubMed] [Google Scholar]
- Rossi S. G., Rotundo R. L. Cell surface acetylcholinesterase molecules on multinucleated myotubes are clustered over the nucleus of origin. J Cell Biol. 1992 Dec;119(6):1657–1667. doi: 10.1083/jcb.119.6.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rotundo R. L., Gomez A. M., Fernandez-Valle C., Randall W. R. Allelic variants of acetylcholinesterase: genetic evidence that all acetylcholinesterase forms in avian nerves and muscles are encoded by a single gene. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7805–7809. doi: 10.1073/pnas.85.20.7805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rotundo R. L. Nucleus-specific translation and assembly of acetylcholinesterase in multinucleated muscle cells. J Cell Biol. 1990 Mar;110(3):715–719. doi: 10.1083/jcb.110.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanes J. R., Johnson Y. R., Kotzbauer P. T., Mudd J., Hanley T., Martinou J. C., Merlie J. P. Selective expression of an acetylcholine receptor-lacZ transgene in synaptic nuclei of adult muscle fibers. Development. 1991 Dec;113(4):1181–1191. doi: 10.1242/dev.113.4.1181. [DOI] [PubMed] [Google Scholar]
- Schalling M., Dagerlind A., Brené S., Hallman H., Djurfeldt M., Persson H., Terenius L., Goldstein M., Schlesinger D., Hökfelt T. Coexistence and gene expression of phenylethanolamine N-methyltransferase, tyrosine hydroxylase, and neuropeptide tyrosine in the rat and bovine adrenal gland: effects of reserpine. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8306–8310. doi: 10.1073/pnas.85.21.8306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schumacher M., Camp S., Maulet Y., Newton M., MacPhee-Quigley K., Taylor S. S., Friedmann T., Taylor P. Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. 1986 Jan 30-Feb 5Nature. 319(6052):407–409. doi: 10.1038/319407a0. [DOI] [PubMed] [Google Scholar]
- Sikorav J. L., Krejci E., Massoulié J. cDNA sequences of Torpedo marmorata acetylcholinesterase: primary structure of the precursor of a catalytic subunit; existence of multiple 5'-untranslated regions. EMBO J. 1987 Jul;6(7):1865–1873. doi: 10.1002/j.1460-2075.1987.tb02445.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon A. M., Hoppe P., Burden S. J. Spatial restriction of AChR gene expression to subsynaptic nuclei. Development. 1992 Mar;114(3):545–553. doi: 10.1242/dev.114.3.545. [DOI] [PubMed] [Google Scholar]
- Sketelj J., Crne-Finderle N., Sket D., Dettbarn W. D., Brzin M. Comparison between the effects of botulinum toxin-induced paralysis and denervation on molecular forms of acetylcholinesterase in muscles. J Neurochem. 1993 Aug;61(2):501–508. doi: 10.1111/j.1471-4159.1993.tb02152.x. [DOI] [PubMed] [Google Scholar]
- Tanaka H., Ozawa E. Expression of dystrophin mRNA and the protein in the developing rat heart. Biochem Biophys Res Commun. 1990 Oct 30;172(2):824–829. doi: 10.1016/0006-291x(90)90749-d. [DOI] [PubMed] [Google Scholar]
- Taylor P. The cholinesterases. J Biol Chem. 1991 Mar 5;266(7):4025–4028. [PubMed] [Google Scholar]
- Tsay H. J., Schmidt J. Skeletal muscle denervation activates acetylcholine receptor genes. J Cell Biol. 1989 Apr;108(4):1523–1526. doi: 10.1083/jcb.108.4.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vigny M., Koenig J., Rieger F. The motor end-plate specific form of acetylcholinesterase: appearance during embryogenesis and re-innervation of rat muscle. J Neurochem. 1976 Dec;27(6):1347–1353. doi: 10.1111/j.1471-4159.1976.tb02614.x. [DOI] [PubMed] [Google Scholar]
- Witzemann V., Barg B., Criado M., Stein E., Sakmann B. Developmental regulation of five subunit specific mRNAs encoding acetylcholine receptor subtypes in rat muscle. FEBS Lett. 1989 Jan 2;242(2):419–424. doi: 10.1016/0014-5793(89)80514-9. [DOI] [PubMed] [Google Scholar]
- Witzemann V., Brenner H. R., Sakmann B. Neural factors regulate AChR subunit mRNAs at rat neuromuscular synapses. J Cell Biol. 1991 Jul;114(1):125–141. doi: 10.1083/jcb.114.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]