Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Nov 2;127(4):935–945. doi: 10.1083/jcb.127.4.935

Ca2+ release from subplasmalemmal stores as a primary event during exocytosis in Paramecium cells

PMCID: PMC2200065  PMID: 7525605

Abstract

A correlated electrophysiological and light microscopic evaluation of trichocyst exocytosis was carried out the Paramecium cells which possess extensive cortical Ca stores with footlike links to the plasmalemma. We used not only intra- but also extracellular recordings to account for polar arrangement of ion channels (while trichocysts can be released from all over the cell surface). With three widely different secretagogues, aminoethyldextran (AED), veratridine and caffeine, similar anterior Nain and posterior Kout currents (both known to be Ca(2+)-dependent) were observed. Direct de- or hyperpolarization induced by current injection failed to trigger exocytosis. For both, exocytotic membrane fusion and secretagogue-induced membrane currents, sensitivity to or availability of Ca2+ appears to be different. Current responses to AED were blocked by W7 or trifluoperazine, while exocytosis remained unaffected. Reducing [Ca2+]o to < or = 0.16 microM (i.e., resting [Ca2+]i) suppressed electrical membrane responses triggered with AED, while we had previously documented normal exocytotic membrane fusion. From this we conclude that the primary effect of AED (as of caffeine) is the mobilization of Ca2+ from the subplasmalemmal pools which not only activates exocytosis (abolished by iontophoretic EGTA injection) but secondarily also spatially segregated plasmalemmal Ca(2+)-dependent ion channels (indicative of subplasmalemmal [Ca2+]i increase, but irrelevant for Ca2+ mobilization). The 45Ca2+ influx previously observed during AED triggering may serve to refill depleted stores. Apart from the insensitivity of our system to depolarization, the mode of direct Ca2+ mobilization from stores by mechanical coupling to the cell membrane (without previous Ca(2+)-influx from outside) closely resembles the model currently discussed for skeletal muscle triads.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almers W. Exocytosis. Annu Rev Physiol. 1990;52:607–624. doi: 10.1146/annurev.ph.52.030190.003135. [DOI] [PubMed] [Google Scholar]
  2. Alonso M. T., Alvarez J., Montero M., Sanchez A., García-Sancho J. Agonist-induced Ca2+ influx into human platelets is secondary to the emptying of intracellular Ca2+ stores. Biochem J. 1991 Dec 15;280(Pt 3):783–789. doi: 10.1042/bj2800783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benham C. D., Bolton T. B. Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit. J Physiol. 1986 Dec;381:385–406. doi: 10.1113/jphysiol.1986.sp016333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bootman M. Intracellular calcium. Questions about quantal Ca2+ release. Curr Biol. 1994 Feb 1;4(2):169–172. doi: 10.1016/s0960-9822(94)00041-2. [DOI] [PubMed] [Google Scholar]
  5. Burgoyne R. D., Morgan A. Regulated exocytosis. Biochem J. 1993 Jul 15;293(Pt 2):305–316. doi: 10.1042/bj2930305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheek T. R., Barry V. A., Berridge M. J., Missiaen L. Bovine adrenal chromaffin cells contain an inositol 1,4,5-trisphosphate-insensitive but caffeine-sensitive Ca2+ store that can be regulated by intraluminal free Ca2+. Biochem J. 1991 May 1;275(Pt 3):697–701. doi: 10.1042/bj2750697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cheek T. R., Moreton R. B., Berridge M. J., Stauderman K. A., Murawsky M. M., Bootman M. D. Quantal Ca2+ release from caffeine-sensitive stores in adrenal chromaffin cells. J Biol Chem. 1993 Dec 25;268(36):27076–27083. [PubMed] [Google Scholar]
  8. Cheek T. R. Spatial aspects of calcium signalling. J Cell Sci. 1989 Jun;93(Pt 2):211–216. doi: 10.1242/jcs.93.2.211. [DOI] [PubMed] [Google Scholar]
  9. Cifuentes M. E., Ronjat M., Ikemoto N. Polylysine induces a rapid Ca2+ release from sarcoplasmic reticulum vesicles by mediation of its binding to the foot protein. Arch Biochem Biophys. 1989 Sep;273(2):554–561. doi: 10.1016/0003-9861(89)90515-8. [DOI] [PubMed] [Google Scholar]
  10. Eckert R., Brehm P. Ionic mechanisms of excitation in Paramecium. Annu Rev Biophys Bioeng. 1979;8:353–383. doi: 10.1146/annurev.bb.08.060179.002033. [DOI] [PubMed] [Google Scholar]
  11. Ehrlich B. E., Jacobson A. R., Hinrichsen R., Sayre L. M., Forte M. A. Paramecium calcium channels are blocked by a family of calmodulin antagonists. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5718–5722. doi: 10.1073/pnas.85.15.5718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haga N., Forte M., Saimi Y., Kung C. Microinjection of cytoplasm as a test of complementation in Paramecium. J Cell Biol. 1982 Feb;92(2):559–564. doi: 10.1083/jcb.92.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hennessey T. M., Kung C. An anticalmodulin drug, W-7, inhibits the voltage-dependent calcium current in Paramecium caudatum. J Exp Biol. 1984 May;110:169–181. doi: 10.1242/jeb.110.1.169. [DOI] [PubMed] [Google Scholar]
  14. Hogg R. C., Wang Q., Large W. A. Time course of spontaneous calcium-activated chloride currents in smooth muscle cells from the rabbit portal vein. J Physiol. 1993 May;464:15–31. doi: 10.1113/jphysiol.1993.sp019622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
  16. Ikemoto N., Antoniu B., Kang J. J., Mészáros L. G., Ronjat M. Intravesicular calcium transient during calcium release from sarcoplasmic reticulum. Biochemistry. 1991 May 28;30(21):5230–5237. doi: 10.1021/bi00235a017. [DOI] [PubMed] [Google Scholar]
  17. Kado R. T. Membrane area and electrical capacitance. Methods Enzymol. 1993;221:273–299. doi: 10.1016/0076-6879(93)21024-3. [DOI] [PubMed] [Google Scholar]
  18. Kang J. J., Tarcsafalvi A., Carlos A. D., Fujimoto E., Shahrokh Z., Thevenin B. J., Shohet S. B., Ikemoto N. Conformational changes in the foot protein of the sarcoplasmic reticulum assessed by site-directed fluorescent labeling. Biochemistry. 1992 Mar 31;31(12):3288–3293. doi: 10.1021/bi00127a034. [DOI] [PubMed] [Google Scholar]
  19. Kerboeuf D., Cohen J. A Ca2+ influx associated with exocytosis is specifically abolished in a Paramecium exocytotic mutant. J Cell Biol. 1990 Dec;111(6 Pt 1):2527–2535. doi: 10.1083/jcb.111.6.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Knoll G., Braun C., Plattner H. Quenched flow analysis of exocytosis in Paramecium cells: time course, changes in membrane structure, and calcium requirements revealed after rapid mixing and rapid freezing of intact cells. J Cell Biol. 1991 Jun;113(6):1295–1304. doi: 10.1083/jcb.113.6.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Knoll G., Kerboeuf D., Plattner H. A rapid calcium influx during exocytosis in Paramecium cells is followed by a rise in cyclic GMP within 1 s. FEBS Lett. 1992 Jun 15;304(2-3):265–268. doi: 10.1016/0014-5793(92)80634-s. [DOI] [PubMed] [Google Scholar]
  22. Loesser K. E., Castellani L., Franzini-Armstrong C. Dispositions of junctional feet in muscles of invertebrates. J Muscle Res Cell Motil. 1992 Apr;13(2):161–173. doi: 10.1007/BF01874153. [DOI] [PubMed] [Google Scholar]
  23. Lumpert C. J., Kersken H., Plattner H. Cell surface complexes ('cortices') isolated from Paramecium tetraurelia cells as a model system for analysing exocytosis in vitro in conjunction with microinjection studies. Biochem J. 1990 Aug 1;269(3):639–645. doi: 10.1042/bj2690639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marty A., Tan Y. P., Trautmann A. Three types of calcium-dependent channel in rat lacrimal glands. J Physiol. 1984 Dec;357:293–325. doi: 10.1113/jphysiol.1984.sp015501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maruyama Y. Excess divalent cations activate Ca(2+)-mobilizing receptors in pancreatic acinar cells. Pflugers Arch. 1993 Feb;422(5):476–480. doi: 10.1007/BF00375075. [DOI] [PubMed] [Google Scholar]
  26. Matthews G., Neher E., Penner R. Second messenger-activated calcium influx in rat peritoneal mast cells. J Physiol. 1989 Nov;418:105–130. doi: 10.1113/jphysiol.1989.sp017830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McPherson P. S., Campbell K. P. The ryanodine receptor/Ca2+ release channel. J Biol Chem. 1993 Jul 5;268(19):13765–13768. [PubMed] [Google Scholar]
  28. McPherson S. M., McPherson P. S., Mathews L., Campbell K. P., Longo F. J. Cortical localization of a calcium release channel in sea urchin eggs. J Cell Biol. 1992 Mar;116(5):1111–1121. doi: 10.1083/jcb.116.5.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Muallem S., Pandol S. J., Beeker T. G. Hormone-evoked calcium release from intracellular stores is a quantal process. J Biol Chem. 1989 Jan 5;264(1):205–212. [PubMed] [Google Scholar]
  30. Nakaoka Y., Tanaka H., Oosawa F. Ca2+-dependent regulation of beat frequency of cilia in Paramecium. J Cell Sci. 1984 Jan;65:223–231. doi: 10.1242/jcs.65.1.223. [DOI] [PubMed] [Google Scholar]
  31. Oertel D., Schein S. J., Kung C. A potassium conductance activated by hyperpolarization in paramecium. J Membr Biol. 1978 Oct 19;43(2-3):169–185. doi: 10.1007/BF01933477. [DOI] [PubMed] [Google Scholar]
  32. Ohkusa T., Kang J. J., Morii M., Ikemoto N. Conformational change of the foot protein of sarcoplasmic reticulum as an initial event of calcium release. J Biochem. 1991 Apr;109(4):609–615. doi: 10.1093/oxfordjournals.jbchem.a123428. [DOI] [PubMed] [Google Scholar]
  33. Plattner H., Lumpert C. J., Knoll G., Kissmehl R., Höhne B., Momayezi M., Glas-Albrecht R. Stimulus-secretion coupling in Paramecium cells. Eur J Cell Biol. 1991 Jun;55(1):3–16. [PubMed] [Google Scholar]
  34. Plattner H., Matt H., Kersken H., Haacke B., Stürzl R. Synchronous exocytosis in Paramecium cells. I. A novel approach. Exp Cell Res. 1984 Mar;151(1):6–13. doi: 10.1016/0014-4827(84)90350-1. [DOI] [PubMed] [Google Scholar]
  35. Plattner H. Regulation of membrane fusion during exocytosis. Int Rev Cytol. 1989;119:197–286. doi: 10.1016/s0074-7696(08)60652-x. [DOI] [PubMed] [Google Scholar]
  36. Plattner H., Reichel K., Matt H., Beisson J., Lefort-Tran M., Pouphile M. Genetic dissection of the final exocytosis steps in Paramecium tetraurelia cells: cytochemical determination of Ca2+-ATPase activity over performed exocytosis sites. J Cell Sci. 1980 Dec;46:17–40. doi: 10.1242/jcs.46.1.17. [DOI] [PubMed] [Google Scholar]
  37. Plattner H., Stürzl R., Matt H. Synchronous exocytosis in Paramecium cells. IV. Polyamino compounds as potent trigger agents for repeatable trigger-redocking cycles. Eur J Cell Biol. 1985 Jan;36(1):32–37. [PubMed] [Google Scholar]
  38. Pollack S. Mutations affecting the trichocysts in Paramecium aurelia. I. Morphology and description of the mutants. J Protozool. 1974 May;21(2):352–362. doi: 10.1111/j.1550-7408.1974.tb03669.x. [DOI] [PubMed] [Google Scholar]
  39. Preston R. R. A magnesium current in Paramecium. Science. 1990 Oct 12;250(4978):285–288. doi: 10.1126/science.2218533. [DOI] [PubMed] [Google Scholar]
  40. Preston R. R. Genetic dissection of Ca2(+)-dependent ion channel function in Paramecium. Bioessays. 1990 Jun;12(6):273–281. doi: 10.1002/bies.950120605. [DOI] [PubMed] [Google Scholar]
  41. Preston R. R., Saimi Y., Kung C. Calcium current activated upon hyperpolarization of Paramecium tetraurelia. J Gen Physiol. 1992 Aug;100(2):233–251. doi: 10.1085/jgp.100.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Preston R. R., Saimi Y., Kung C. Calcium-dependent inactivation of the calcium current activated upon hyperpolarization of Paramecium tetraurelia. J Gen Physiol. 1992 Aug;100(2):253–268. doi: 10.1085/jgp.100.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Preston R. R., Saimi Y., Kung C. Evidence for two K+ currents activated upon hyperpolarization of Paramecium tetraurelia. J Membr Biol. 1990 Apr;115(1):41–50. doi: 10.1007/BF01869104. [DOI] [PubMed] [Google Scholar]
  44. Preston R. R., Wallen-Friedman M. A., Saimi Y., Kung C. Calmodulin defects cause the loss of Ca2(+)-dependent K+ currents in two pantophobiac mutants of Paramecium tetraurelia. J Membr Biol. 1990 Apr;115(1):51–60. doi: 10.1007/BF01869105. [DOI] [PubMed] [Google Scholar]
  45. Ríos E., Pizarro G., Stefani E. Charge movement and the nature of signal transduction in skeletal muscle excitation-contraction coupling. Annu Rev Physiol. 1992;54:109–133. doi: 10.1146/annurev.ph.54.030192.000545. [DOI] [PubMed] [Google Scholar]
  46. Ríos E., Pizarro G. Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev. 1991 Jul;71(3):849–908. doi: 10.1152/physrev.1991.71.3.849. [DOI] [PubMed] [Google Scholar]
  47. Saimi Y., Kung C. A Ca-induced Na-current in Paramecium. J Exp Biol. 1980 Oct;88:305–325. doi: 10.1242/jeb.88.1.305. [DOI] [PubMed] [Google Scholar]
  48. Saimi Y., Ling K. Y. Calmodulin activation of calcium-dependent sodium channels in excised membrane patches of Paramecium. Science. 1990 Sep 21;249(4975):1441–1444. doi: 10.1126/science.2169650. [DOI] [PubMed] [Google Scholar]
  49. Stelly N., Mauger J. P., Claret M., Adoutte A. Cortical alveoli of Paramecium: a vast submembranous calcium storage compartment. J Cell Biol. 1991 Apr;113(1):103–112. doi: 10.1083/jcb.113.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Szöllösi J., Feuerstein B. G., Vereb G., Pershadsingh H. A., Marton L. J. Calcium channels in PDGF-stimulated A172 cells open after intracellular calcium release and are not voltage-dependent. Cell Calcium. 1991 Jul;12(7):477–491. doi: 10.1016/0143-4160(91)90030-i. [DOI] [PubMed] [Google Scholar]
  51. Taylor C. W., Marshall I. C. Calcium and inositol 1,4,5-trisphosphate receptors: a complex relationship. Trends Biochem Sci. 1992 Oct;17(10):403–407. doi: 10.1016/0968-0004(92)90009-x. [DOI] [PubMed] [Google Scholar]
  52. Toescu E. C., O'Neill S. C., Petersen O. H., Eisner D. A. Caffeine inhibits the agonist-evoked cytosolic Ca2+ signal in mouse pancreatic acinar cells by blocking inositol trisphosphate production. J Biol Chem. 1992 Nov 25;267(33):23467–23470. [PubMed] [Google Scholar]
  53. Trautmann A., Marty A. Activation of Ca-dependent K channels by carbamoylcholine in rat lacrimal glands. Proc Natl Acad Sci U S A. 1984 Jan;81(2):611–615. doi: 10.1073/pnas.81.2.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Vale M. G. Effects of compound 48/80 on the Ca2+ release by reversal of the Ca2+ pump and by the Ca2+ channel of sarcoplasmic reticulum membranes. Arch Biochem Biophys. 1990 Jun;279(2):275–280. doi: 10.1016/0003-9861(90)90491-g. [DOI] [PubMed] [Google Scholar]
  55. Wang Q., Hogg R. C., Large W. A. Properties of spontaneous inward currents recorded in smooth muscle cells isolated from the rabbit portal vein. J Physiol. 1992;451:525–537. doi: 10.1113/jphysiol.1992.sp019177. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES