Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Feb 2;120(4):1059–1067. doi: 10.1083/jcb.120.4.1059

Identification and characterization of thrombospondin-4, a new member of the thrombospondin gene family

PMCID: PMC2200072  PMID: 8432726

Abstract

A new member of the thrombospondin gene family, designated thrombospondin-4, has been identified in the Xenopus laevis genome. The predicted amino acid sequence indicates that the protein is similar to the other members of this gene family in the structure of the type 3 repeats and the COOH-terminal domain. Thrombospondin-4 contains four type 2 repeats and lacks the type 1 repeats that are found in thrombospondin-1 and 2. The amino-terminal domain of thrombospondin-4 has no significant homology with the other members of the thrombospondin gene family or with other proteins in the database. RNAse protection analysis establishes that the initial expression of Xenopus thrombospondin-4 is observed during neurulation. Levels of mRNA expression increase twofold during tailbud stages but decrease by the feeding tadpole stage. The size of the thrombospondin-4 message is 3.3 Kb and 3.4 Kb in the frog and human, respectively. Northern blot analysis of human tissues reveals high levels of thrombospondin-4 expression in heart and skeletal muscle, low levels in brain, lung and pancreas and undetectable levels in the placenta, liver and kidney. These data establish the existence of a new member of the thrombospondin gene family that may participate in the genesis and function of cardiac and skeletal muscle.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asch A. S., Silbiger S., Heimer E., Nachman R. L. Thrombospondin sequence motif (CSVTCG) is responsible for CD36 binding. Biochem Biophys Res Commun. 1992 Feb 14;182(3):1208–1217. doi: 10.1016/0006-291x(92)91860-s. [DOI] [PubMed] [Google Scholar]
  2. Asch A. S., Tepler J., Silbiger S., Nachman R. L. Cellular attachment to thrombospondin. Cooperative interactions between receptor systems. J Biol Chem. 1991 Jan 25;266(3):1740–1745. [PubMed] [Google Scholar]
  3. Bisbee C. A., Baker M. A., Wilson A. C., Haji-Azimi I., Fischberg M. Albumin phylogeny for clawed frogs (Xenopus). Science. 1977 Feb 25;195(4280):785–787. doi: 10.1126/science.65013. [DOI] [PubMed] [Google Scholar]
  4. Bornstein P., Alfi D., Devarayalu S., Framson P., Li P. Characterization of the mouse thrombospondin gene and evaluation of the role of the first intron in human gene expression. J Biol Chem. 1990 Sep 25;265(27):16691–16698. [PubMed] [Google Scholar]
  5. Bornstein P., Devarayalu S., Li P., Disteche C. M., Framson P. A second thrombospondin gene in the mouse is similar in organization to thrombospondin 1 but does not respond to serum. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8636–8640. doi: 10.1073/pnas.88.19.8636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bornstein P., O'Rourke K., Wikstrom K., Wolf F. W., Katz R., Li P., Dixit V. M. A second, expressed thrombospondin gene (Thbs2) exists in the mouse genome. J Biol Chem. 1991 Jul 15;266(20):12821–12824. [PubMed] [Google Scholar]
  7. Clezardin P., Bourdillon M. C., Hunter N. R., McGregor J. L. Cell attachment and fibrinogen binding properties of platelet and endothelial cell thrombospondin are not affected by structural differences in the 70 and 18 kDa protease-resistant domains. FEBS Lett. 1988 Feb 15;228(2):215–218. doi: 10.1016/0014-5793(88)80001-2. [DOI] [PubMed] [Google Scholar]
  8. Corless C. L., Mendoza A., Collins T., Lawler J. Colocalization of thrombospondin and syndecan during murine development. Dev Dyn. 1992 Apr;193(4):346–358. doi: 10.1002/aja.1001930408. [DOI] [PubMed] [Google Scholar]
  9. DeSimone D. W., Hynes R. O. Xenopus laevis integrins. Structural conservation and evolutionary divergence of integrin beta subunits. J Biol Chem. 1988 Apr 15;263(11):5333–5340. [PubMed] [Google Scholar]
  10. DeSimone D. W., Norton P. A., Hynes R. O. Identification and characterization of alternatively spliced fibronectin mRNAs expressed in early Xenopus embryos. Dev Biol. 1992 Feb;149(2):357–369. doi: 10.1016/0012-1606(92)90291-n. [DOI] [PubMed] [Google Scholar]
  11. Dixit V. M., Haverstick D. M., O'Rourke K. M., Hennessy S. W., Grant G. A., Santoro S. A., Frazier W. A. A monoclonal antibody against human thrombospondin inhibits platelet aggregation. Proc Natl Acad Sci U S A. 1985 May;82(10):3472–3476. doi: 10.1073/pnas.82.10.3472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Galvin N. J., Dixit V. M., O'Rourke K. M., Santoro S. A., Grant G. A., Frazier W. A. Mapping of epitopes for monoclonal antibodies against human platelet thrombospondin with electron microscopy and high sensitivity amino acid sequencing. J Cell Biol. 1985 Oct;101(4):1434–1441. doi: 10.1083/jcb.101.4.1434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gartner T. K., Walz D. A., Aiken M., Starr-Spires L., Ogilvie M. L. Antibodies against a 23Kd heparin binding fragment of thrombospondin inhibit platelet aggregation. Biochem Biophys Res Commun. 1984 Oct 15;124(1):290–295. doi: 10.1016/0006-291x(84)90950-1. [DOI] [PubMed] [Google Scholar]
  14. Guo N. H., Krutzsch H. C., Nègre E., Vogel T., Blake D. A., Roberts D. D. Heparin- and sulfatide-binding peptides from the type I repeats of human thrombospondin promote melanoma cell adhesion. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3040–3044. doi: 10.1073/pnas.89.7.3040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Handford P. A., Mayhew M., Baron M., Winship P. R., Campbell I. D., Brownlee G. G. Key residues involved in calcium-binding motifs in EGF-like domains. Nature. 1991 May 9;351(6322):164–167. doi: 10.1038/351164a0. [DOI] [PubMed] [Google Scholar]
  16. Hubbard S. C., Ivatt R. J. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
  17. Karczewski J., Knudsen K. A., Smith L., Murphy A., Rothman V. L., Tuszynski G. P. The interaction of thrombospondin with platelet glycoprotein GPIIb-IIIa. J Biol Chem. 1989 Dec 15;264(35):21322–21326. [PubMed] [Google Scholar]
  18. Kosfeld M. D., Pavlopoulos T. V., Frazier W. A. Cell attachment activity of the carboxyl-terminal domain of human thrombospondin expressed in Escherichia coli. J Biol Chem. 1991 Dec 25;266(36):24257–24259. [PubMed] [Google Scholar]
  19. Krieg P. A., Varnum S. M., Wormington W. M., Melton D. A. The mRNA encoding elongation factor 1-alpha (EF-1 alpha) is a major transcript at the midblastula transition in Xenopus. Dev Biol. 1989 May;133(1):93–100. doi: 10.1016/0012-1606(89)90300-x. [DOI] [PubMed] [Google Scholar]
  20. Lancaster C. A., Peat N., Duhig T., Wilson D., Taylor-Papadimitriou J., Gendler S. J. Structure and expression of the human polymorphic epithelial mucin gene: an expressed VNTR unit. Biochem Biophys Res Commun. 1990 Dec 31;173(3):1019–1029. doi: 10.1016/s0006-291x(05)80888-5. [DOI] [PubMed] [Google Scholar]
  21. Lawler J., Connolly J. E., Ferro P., Derick L. H. Thrombin and chymotrypsin interactions with thrombospondin. Ann N Y Acad Sci. 1986;485:273–287. doi: 10.1111/j.1749-6632.1986.tb34589.x. [DOI] [PubMed] [Google Scholar]
  22. Lawler J., Derick L. H., Connolly J. E., Chen J. H., Chao F. C. The structure of human platelet thrombospondin. J Biol Chem. 1985 Mar 25;260(6):3762–3772. [PubMed] [Google Scholar]
  23. Lawler J., Duquette M., Ferro P. Cloning and sequencing of chicken thrombospondin. J Biol Chem. 1991 May 5;266(13):8039–8043. [PubMed] [Google Scholar]
  24. Lawler J., Duquette M., Ferro P., Copeland N. G., Gilbert D. J., Jenkins N. A. Characterization of the murine thrombospondin gene. Genomics. 1991 Nov;11(3):587–600. doi: 10.1016/0888-7543(91)90066-n. [DOI] [PubMed] [Google Scholar]
  25. Lawler J., Ferro P., Duquette M. Expression and mutagenesis of thrombospondin. Biochemistry. 1992 Feb 4;31(4):1173–1180. doi: 10.1021/bi00119a029. [DOI] [PubMed] [Google Scholar]
  26. Lawler J., Hynes R. O. An integrin receptor on normal and thrombasthenic platelets that binds thrombospondin. Blood. 1989 Nov 1;74(6):2022–2027. [PubMed] [Google Scholar]
  27. Lawler J., Hynes R. O. The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. J Cell Biol. 1986 Nov;103(5):1635–1648. doi: 10.1083/jcb.103.5.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lawler J., Simons E. R. Cooperative binding of calcium to thrombospondin. The effect of calcium on the circular dichroism and limited tryptic digestion of thrombospondin. J Biol Chem. 1983 Oct 25;258(20):12098–12101. [PubMed] [Google Scholar]
  29. Lawler J., Weinstein R., Hynes R. O. Cell attachment to thrombospondin: the role of ARG-GLY-ASP, calcium, and integrin receptors. J Cell Biol. 1988 Dec;107(6 Pt 1):2351–2361. doi: 10.1083/jcb.107.6.2351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Leung-Hagesteijn C., Spence A. M., Stern B. D., Zhou Y., Su M. W., Hedgecock E. M., Culotti J. G. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell. 1992 Oct 16;71(2):289–299. doi: 10.1016/0092-8674(92)90357-i. [DOI] [PubMed] [Google Scholar]
  31. Neugebauer K. M., Emmett C. J., Venstrom K. A., Reichardt L. F. Vitronectin and thrombospondin promote retinal neurite outgrowth: developmental regulation and role of integrins. Neuron. 1991 Mar;6(3):345–358. doi: 10.1016/0896-6273(91)90244-t. [DOI] [PubMed] [Google Scholar]
  32. Newport J., Kirschner M. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell. 1982 Oct;30(3):675–686. doi: 10.1016/0092-8674(82)90272-0. [DOI] [PubMed] [Google Scholar]
  33. O'Shea K. S., Dixit V. M. Unique distribution of the extracellular matrix component thrombospondin in the developing mouse embryo. J Cell Biol. 1988 Dec;107(6 Pt 2):2737–2748. doi: 10.1083/jcb.107.6.2737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. O'Shea K. S., Liu L. H., Dixit V. M. Thrombospondin and a 140 kd fragment promote adhesion and neurite outgrowth from embryonic central and peripheral neurons and from PC12 cells. Neuron. 1991 Aug;7(2):231–237. doi: 10.1016/0896-6273(91)90261-w. [DOI] [PubMed] [Google Scholar]
  35. Ohlin A. K., Landes G., Bourdon P., Oppenheimer C., Wydro R., Stenflo J. Beta-hydroxyaspartic acid in the first epidermal growth factor-like domain of protein C. Its role in Ca2+ binding and biological activity. J Biol Chem. 1988 Dec 15;263(35):19240–19248. [PubMed] [Google Scholar]
  36. Prater C. A., Plotkin J., Jaye D., Frazier W. A. The properdin-like type I repeats of human thrombospondin contain a cell attachment site. J Cell Biol. 1991 Mar;112(5):1031–1040. doi: 10.1083/jcb.112.5.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Przysiecki C. T., Staggers J. E., Ramjit H. G., Musson D. G., Stern A. M., Bennett C. D., Friedman P. A. Occurrence of beta-hydroxylated asparagine residues in non-vitamin K-dependent proteins containing epidermal growth factor-like domains. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7856–7860. doi: 10.1073/pnas.84.22.7856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rich K. A., George F. W., 4th, Law J. L., Martin W. J. Cell-adhesive motif in region II of malarial circumsporozoite protein. Science. 1990 Sep 28;249(4976):1574–1577. doi: 10.1126/science.2120774. [DOI] [PubMed] [Google Scholar]
  39. Roberts D. D., Haverstick D. M., Dixit V. M., Frazier W. A., Santoro S. A., Ginsburg V. The platelet glycoprotein thrombospondin binds specifically to sulfated glycolipids. J Biol Chem. 1985 Aug 5;260(16):9405–9411. [PubMed] [Google Scholar]
  40. Roberts D. D., Sherwood J. A., Ginsburg V. Platelet thrombospondin mediates attachment and spreading of human melanoma cells. J Cell Biol. 1987 Jan;104(1):131–139. doi: 10.1083/jcb.104.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Santoro S. A. Thrombospondin and the adhesive behavior of platelets. Semin Thromb Hemost. 1987 Jul;13(3):290–297. doi: 10.1055/s-2007-1003504. [DOI] [PubMed] [Google Scholar]
  43. Stenflo J., Ohlin A. K., Owen W. G., Schneider W. J. beta-Hydroxyaspartic acid or beta-hydroxyasparagine in bovine low density lipoprotein receptor and in bovine thrombomodulin. J Biol Chem. 1988 Jan 5;263(1):21–24. [PubMed] [Google Scholar]
  44. Stomski F. C., Gani J. S., Bates R. C., Burns G. F. Adhesion to thrombospondin by human embryonic fibroblasts is mediated by multiple receptors and includes a role for glycoprotein 88 (CD36). Exp Cell Res. 1992 Jan;198(1):85–92. doi: 10.1016/0014-4827(92)90152-x. [DOI] [PubMed] [Google Scholar]
  45. Sun X., Mosher D. F., Rapraeger A. Heparan sulfate-mediated binding of epithelial cell surface proteoglycan to thrombospondin. J Biol Chem. 1989 Feb 15;264(5):2885–2889. [PubMed] [Google Scholar]
  46. Tuszynski G. P., Karczewski J., Smith L., Murphy A., Rothman V. L., Knudsen K. A. The GPIIB-IIIa-like complex may function as a human melanoma cell adhesion receptor for thrombospondin. Exp Cell Res. 1989 Jun;182(2):473–481. doi: 10.1016/0014-4827(89)90251-6. [DOI] [PubMed] [Google Scholar]
  47. Tuszynski G. P., Kowalska M. A. Thrombospondin-induced adhesion of human platelets. J Clin Invest. 1991 Apr;87(4):1387–1394. doi: 10.1172/JCI115144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tuszynski G. P., Rothman V. L., Deutch A. H., Hamilton B. K., Eyal J. Biological activities of peptides and peptide analogues derived from common sequences present in thrombospondin, properdin, and malarial proteins. J Cell Biol. 1992 Jan;116(1):209–217. doi: 10.1083/jcb.116.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Varani J., Dixit V. M., Fligiel S. E., McKeever P. E., Carey T. E. Thrombospondin-induced attachment and spreading of human squamous carcinoma cells. Exp Cell Res. 1986 Dec;167(2):376–390. doi: 10.1016/0014-4827(86)90178-3. [DOI] [PubMed] [Google Scholar]
  50. Varani J., Nickoloff B. J., Riser B. L., Mitra R. S., O'Rourke K., Dixit V. M. Thrombospondin-induced adhesion of human keratinocytes. J Clin Invest. 1988 May;81(5):1537–1544. doi: 10.1172/JCI113486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Vos H. L., Devarayalu S., de Vries Y., Bornstein P. Thrombospondin 3 (Thbs3), a new member of the thrombospondin gene family. J Biol Chem. 1992 Jun 15;267(17):12192–12196. [PubMed] [Google Scholar]
  52. Wolf F. W., Eddy R. L., Shows T. B., Dixit V. M. Structure and chromosomal localization of the human thrombospondin gene. Genomics. 1990 Apr;6(4):685–691. doi: 10.1016/0888-7543(90)90505-o. [DOI] [PubMed] [Google Scholar]
  53. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES