Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Feb 2;120(4):923–934. doi: 10.1083/jcb.120.4.923

Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape

PMCID: PMC2200075  PMID: 8432732

Abstract

Microtubules are long, proteinaceous filaments that perform structural functions in eukaryotic cells by defining cellular shape and serving as tracks for intracellular motor proteins. We report the first accurate measurements of the flexural rigidity of microtubules. By analyzing the thermally driven fluctuations in their shape, we estimated the mean flexural rigidity of taxol-stabilized microtubules to be 2.2 x 10(-23) Nm2 (with 6.4% uncertainty) for seven unlabeled microtubules and 2.1 x 10(-23) Nm2 (with 4.7% uncertainty) for eight rhodamine-labeled microtubules. These values are similar to earlier, less precise estimates of microtubule bending stiffness obtained by modeling flagellar motion. A similar analysis on seven rhodamine-phalloidin- labeled actin filaments gave a flexural rigidity of 7.3 x 10(-26) Nm2 (with 6% uncertainty), consistent with previously reported results. The flexural rigidity of these microtubules corresponds to a persistence length of 5,200 microns showing that a microtubule is rigid over cellular dimensions. By contrast, the persistence length of an actin filament is only approximately 17.7 microns, perhaps explaining why actin filaments within cells are usually cross-linked into bundles. The greater flexural rigidity of a microtubule compared to an actin filament mainly derives from the former's larger cross-section. If tubulin were homogeneous and isotropic, then the microtubule's Young's modulus would be approximately 1.2 GPa, similar to Plexiglas and rigid plastics. Microtubules are expected to be almost inextensible: the compliance of cells is due primarily to filament bending or sliding between filaments rather than the stretching of the filaments themselves.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos L. A., Amos W. B. The bending of sliding microtubules imaged by confocal light microscopy and negative stain electron microscopy. J Cell Sci Suppl. 1991;14:95–101. doi: 10.1242/jcs.1991.supplement_14.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amos L., Klug A. Arrangement of subunits in flagellar microtubules. J Cell Sci. 1974 May;14(3):523–549. doi: 10.1242/jcs.14.3.523. [DOI] [PubMed] [Google Scholar]
  3. Baas P. W., White L. A., Heidemann S. R. Microtubule polarity reversal accompanies regrowth of amputated neurites. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5272–5276. doi: 10.1073/pnas.84.15.5272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beese L., Stubbs G., Cohen C. Microtubule structure at 18 A resolution. J Mol Biol. 1987 Mar 20;194(2):257–264. doi: 10.1016/0022-2836(87)90373-1. [DOI] [PubMed] [Google Scholar]
  5. Brokaw C. J. Computer simulation of bend propagation by axoplasmic microtubules. Cell Motil Cytoskeleton. 1986;6(3):347–353. doi: 10.1002/cm.970060311. [DOI] [PubMed] [Google Scholar]
  6. Brokaw C. J. Cross-bridge behavior in a sliding filament model for flagella. Soc Gen Physiol Ser. 1975;30:165–179. [PubMed] [Google Scholar]
  7. Brokaw C. J. Effects of increased viscosity on the movements of some invertebrate spermatozoa. J Exp Biol. 1966 Aug;45(1):113–139. doi: 10.1242/jeb.45.1.113. [DOI] [PubMed] [Google Scholar]
  8. Chrétien D., Wade R. H. New data on the microtubule surface lattice. Biol Cell. 1991;71(1-2):161–174. doi: 10.1016/0248-4900(91)90062-r. [DOI] [PubMed] [Google Scholar]
  9. Dennerll T. J., Joshi H. C., Steel V. L., Buxbaum R. E., Heidemann S. R. Tension and compression in the cytoskeleton of PC-12 neurites. II: Quantitative measurements. J Cell Biol. 1988 Aug;107(2):665–674. doi: 10.1083/jcb.107.2.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dennerll T. J., Lamoureux P., Buxbaum R. E., Heidemann S. R. The cytomechanics of axonal elongation and retraction. J Cell Biol. 1989 Dec;109(6 Pt 1):3073–3083. doi: 10.1083/jcb.109.6.3073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
  12. Hyman A., Drechsel D., Kellogg D., Salser S., Sawin K., Steffen P., Wordeman L., Mitchison T. Preparation of modified tubulins. Methods Enzymol. 1991;196:478–485. doi: 10.1016/0076-6879(91)96041-o. [DOI] [PubMed] [Google Scholar]
  13. Kamimura S., Takahashi K. Direct measurement of the force of microtubule sliding in flagella. Nature. 1981 Oct 15;293(5833):566–568. doi: 10.1038/293566a0. [DOI] [PubMed] [Google Scholar]
  14. Kishino A., Yanagida T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature. 1988 Jul 7;334(6177):74–76. doi: 10.1038/334074a0. [DOI] [PubMed] [Google Scholar]
  15. Mizushima-Sugano J., Maeda T., Miki-Noumura T. Flexural rigidity of singlet microtubules estimated from statistical analysis of their contour lengths and end-to-end distances. Biochim Biophys Acta. 1983 Jan 25;755(2):257–262. doi: 10.1016/0304-4165(83)90212-x. [DOI] [PubMed] [Google Scholar]
  16. Nagashima H., Asakura S. Dark-field light microscopic study of the flexibility of F-actin complexes. J Mol Biol. 1980 Jan 15;136(2):169–182. doi: 10.1016/0022-2836(80)90311-3. [DOI] [PubMed] [Google Scholar]
  17. Omoto C. K., Brokaw C. J. Structure and behaviour of the sperm terminal filament. J Cell Sci. 1982 Dec;58:385–409. doi: 10.1242/jcs.58.1.385. [DOI] [PubMed] [Google Scholar]
  18. Pardee J. D., Spudich J. A. Purification of muscle actin. Methods Enzymol. 1982;85(Pt B):164–181. doi: 10.1016/0076-6879(82)85020-9. [DOI] [PubMed] [Google Scholar]
  19. Weingarten M. D., Suter M. M., Littman D. R., Kirschner M. W. Properties of the depolymerization products of microtubules from mammalian brain. Biochemistry. 1974 Dec 31;13(27):5529–5537. doi: 10.1021/bi00724a012. [DOI] [PubMed] [Google Scholar]
  20. Yanagida T., Nakase M., Nishiyama K., Oosawa F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature. 1984 Jan 5;307(5946):58–60. doi: 10.1038/307058a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES