Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Apr 2;121(2):469–477. doi: 10.1083/jcb.121.2.469

Inhibition of fibronectin binding and fibronectin-mediated cell adhesion to collagen by a peptide from the second type I repeat of thrombospondin

PMCID: PMC2200097  PMID: 8468356

Abstract

The platelet and extracellular matrix glycoprotein thrombospondin interacts with various types of cells as both a positive and negative modulator of cell adhesion, motility, and proliferation. These effects may be mediated by binding of thrombospondin to cell surface receptors or indirectly by binding to other extracellular matrix components. The role of peptide sequences from the type I repeats of thrombospondin in its interaction with fibronectin were investigated. Fibronectin bound specifically to the peptide Gly-Gly-Trp-Ser-His-Trp from the second type I repeat of thrombospondin but not to the corresponding peptides from the first or third repeats or flanking sequences from the second repeat. The two Trp residues and the His residue were essential for binding, and the two Gly residues enhanced the affinity of binding. Binding of the peptide and intact thrombospondin to fibronectin were inhibited by the gelatin-binding domain of fibronectin. The peptide specifically inhibited binding of fibronectin to gelatin or type I collagen and inhibited fibronectin-mediated adhesion of breast carcinoma and melanoma cells to gelatin or type I collagen substrates but not direct adhesion of the cells to fibronectin, which was inhibited by the peptide Gly-Arg-Gly-Asp-Ser. Thus, the fibronectin- binding thrombospondin peptide Gly-Gly-Trp-Ser-His-Trp is a selective inhibitor of fibronectin-mediated interactions of cells with collagen in the extracellular matrix.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama S. K., Yamada K. M. The interaction of plasma fibronectin with fibroblastic cells in suspension. J Biol Chem. 1985 Apr 10;260(7):4492–4500. [PubMed] [Google Scholar]
  2. Asch A. S., Silbiger S., Heimer E., Nachman R. L. Thrombospondin sequence motif (CSVTCG) is responsible for CD36 binding. Biochem Biophys Res Commun. 1992 Feb 14;182(3):1208–1217. doi: 10.1016/0006-291x(92)91860-s. [DOI] [PubMed] [Google Scholar]
  3. Barchan D., Kachalsky S., Neumann D., Vogel Z., Ovadia M., Kochva E., Fuchs S. How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7717–7721. doi: 10.1073/pnas.89.16.7717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bazan J. F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6934–6938. doi: 10.1073/pnas.87.18.6934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dardik R., Lahav J. Cell-binding domain of endothelial cell thrombospondin: localization to the 70-kDa core fragment and determination of binding characteristics. Biochemistry. 1991 Sep 24;30(38):9378–9386. doi: 10.1021/bi00102a035. [DOI] [PubMed] [Google Scholar]
  6. Dardik R., Lahav J. Multiple domains are involved in the interaction of endothelial cell thrombospondin with fibronectin. Eur J Biochem. 1989 Nov 20;185(3):581–588. doi: 10.1111/j.1432-1033.1989.tb15153.x. [DOI] [PubMed] [Google Scholar]
  7. Frazier W. A. Thrombospondins. Curr Opin Cell Biol. 1991 Oct;3(5):792–799. doi: 10.1016/0955-0674(91)90052-z. [DOI] [PubMed] [Google Scholar]
  8. Gelder F. B., Brown S. T., 3rd Fibronectin gelatin-binding activity: effects of platelet thrombospondin, serum, and plasma. J Lab Clin Med. 1987 Nov;110(5):548–557. [PubMed] [Google Scholar]
  9. Guo N. H., Krutzsch H. C., Nègre E., Vogel T., Blake D. A., Roberts D. D. Heparin- and sulfatide-binding peptides from the type I repeats of human thrombospondin promote melanoma cell adhesion. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3040–3044. doi: 10.1073/pnas.89.7.3040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guo N. H., Krutzsch H. C., Nègre E., Zabrenetzky V. S., Roberts D. D. Heparin-binding peptides from the type I repeats of thrombospondin. Structural requirements for heparin binding and promotion of melanoma cell adhesion and chemotaxis. J Biol Chem. 1992 Sep 25;267(27):19349–19355. [PubMed] [Google Scholar]
  11. Guo N. H., Krutzsch H. C., Vogel T., Roberts D. D. Interactions of a laminin-binding peptide from a 33-kDa protein related to the 67-kDa laminin receptor with laminin and melanoma cells are heparin-dependent. J Biol Chem. 1992 Sep 5;267(25):17743–17747. [PubMed] [Google Scholar]
  12. Homandberg G. A., Kramer-Bjerke J. Thrombospondin binds to amino-terminal fragments of plasma fibronectin. Thromb Res. 1987 Nov 1;48(3):329–335. doi: 10.1016/0049-3848(87)90445-2. [DOI] [PubMed] [Google Scholar]
  13. Humphries M. J., Olden K., Yamada K. M. A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science. 1986 Jul 25;233(4762):467–470. doi: 10.1126/science.3726541. [DOI] [PubMed] [Google Scholar]
  14. Karlin A. Explorations of the nicotinic acetylcholine receptor. Harvey Lect. 1989;85:71–107. [PubMed] [Google Scholar]
  15. Klar A., Baldassare M., Jessell T. M. F-spondin: a gene expressed at high levels in the floor plate encodes a secreted protein that promotes neural cell adhesion and neurite extension. Cell. 1992 Apr 3;69(1):95–110. doi: 10.1016/0092-8674(92)90121-r. [DOI] [PubMed] [Google Scholar]
  16. Lahav J. Thrombospondin inhibits adhesion of endothelial cells. Exp Cell Res. 1988 Jul;177(1):199–204. doi: 10.1016/0014-4827(88)90037-7. [DOI] [PubMed] [Google Scholar]
  17. Laherty C. D., O'Rourke K., Wolf F. W., Katz R., Seldin M. F., Dixit V. M. Characterization of mouse thrombospondin 2 sequence and expression during cell growth and development. J Biol Chem. 1992 Feb 15;267(5):3274–3281. [PubMed] [Google Scholar]
  18. Lawler J., Hynes R. O. The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. J Cell Biol. 1986 Nov;103(5):1635–1648. doi: 10.1083/jcb.103.5.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Majack R. A., Goodman L. V., Dixit V. M. Cell surface thrombospondin is functionally essential for vascular smooth muscle cell proliferation. J Cell Biol. 1988 Feb;106(2):415–422. doi: 10.1083/jcb.106.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Miyazaki T., Maruyama M., Yamada G., Hatakeyama M., Taniguchi T. The integrity of the conserved 'WS motif' common to IL-2 and other cytokine receptors is essential for ligand binding and signal transduction. EMBO J. 1991 Nov;10(11):3191–3197. doi: 10.1002/j.1460-2075.1991.tb04881.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morla A., Ruoslahti E. A fibronectin self-assembly site involved in fibronectin matrix assembly: reconstruction in a synthetic peptide. J Cell Biol. 1992 Jul;118(2):421–429. doi: 10.1083/jcb.118.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mosher D. F. Physiology of thrombospondin. Annu Rev Med. 1990;41:85–97. doi: 10.1146/annurev.me.41.020190.000505. [DOI] [PubMed] [Google Scholar]
  23. Murphy-Ullrich J. E., Hök M. Thrombospondin modulates focal adhesions in endothelial cells. J Cell Biol. 1989 Sep;109(3):1309–1319. doi: 10.1083/jcb.109.3.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Newman S. A., Frenz D. A., Hasegawa E., Akiyama S. K. Matrix-driven translocation: dependence on interaction of amino-terminal domain of fibronectin with heparin-like surface components of cells or particles. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4791–4795. doi: 10.1073/pnas.84.14.4791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nikas I., McLauchlan J., Davison A. J., Taylor W. R., Clements J. B. Structural features of ribonucleotide reductase. Proteins. 1986 Dec;1(4):376–384. doi: 10.1002/prot.340010411. [DOI] [PubMed] [Google Scholar]
  26. Ohana B., Gershoni J. M. Comparison of the toxin binding sites of the nicotinic acetylcholine receptor from Drosophila to human. Biochemistry. 1990 Jul 10;29(27):6409–6415. doi: 10.1021/bi00479a011. [DOI] [PubMed] [Google Scholar]
  27. Prater C. A., Plotkin J., Jaye D., Frazier W. A. The properdin-like type I repeats of human thrombospondin contain a cell attachment site. J Cell Biol. 1991 Mar;112(5):1031–1040. doi: 10.1083/jcb.112.5.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rich K. A., George F. W., 4th, Law J. L., Martin W. J. Cell-adhesive motif in region II of malarial circumsporozoite protein. Science. 1990 Sep 28;249(4976):1574–1577. doi: 10.1126/science.2120774. [DOI] [PubMed] [Google Scholar]
  29. Roberts D. D., Haverstick D. M., Dixit V. M., Frazier W. A., Santoro S. A., Ginsburg V. The platelet glycoprotein thrombospondin binds specifically to sulfated glycolipids. J Biol Chem. 1985 Aug 5;260(16):9405–9411. [PubMed] [Google Scholar]
  30. Roberts D. D., Sherwood J. A., Ginsburg V. Platelet thrombospondin mediates attachment and spreading of human melanoma cells. J Cell Biol. 1987 Jan;104(1):131–139. doi: 10.1083/jcb.104.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sage E. H., Bornstein P. Extracellular proteins that modulate cell-matrix interactions. SPARC, tenascin, and thrombospondin. J Biol Chem. 1991 Aug 15;266(23):14831–14834. [PubMed] [Google Scholar]
  32. Taraboletti G., Roberts D. D., Liotta L. A. Thrombospondin-induced tumor cell migration: haptotaxis and chemotaxis are mediated by different molecular domains. J Cell Biol. 1987 Nov;105(5):2409–2415. doi: 10.1083/jcb.105.5.2409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Taraboletti G., Roberts D., Liotta L. A., Giavazzi R. Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth: a potential angiogenesis regulatory factor. J Cell Biol. 1990 Aug;111(2):765–772. doi: 10.1083/jcb.111.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Todaro G. J., Fryling C., De Larco J. E. Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5258–5262. doi: 10.1073/pnas.77.9.5258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tuszynski G. P., Rothman V. L., Deutch A. H., Hamilton B. K., Eyal J. Biological activities of peptides and peptide analogues derived from common sequences present in thrombospondin, properdin, and malarial proteins. J Cell Biol. 1992 Jan;116(1):209–217. doi: 10.1083/jcb.116.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wharton K. A., Thomsen G. H., Gelbart W. M. Drosophila 60A gene, another transforming growth factor beta family member, is closely related to human bone morphogenetic proteins. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9214–9218. doi: 10.1073/pnas.88.20.9214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yamada K. M. Adhesive recognition sequences. J Biol Chem. 1991 Jul 15;266(20):12809–12812. [PubMed] [Google Scholar]
  38. Yoshimura A., Zimmers T., Neumann D., Longmore G., Yoshimura Y., Lodish H. F. Mutations in the Trp-Ser-X-Trp-Ser motif of the erythropoietin receptor abolish processing, ligand binding, and activation of the receptor. J Biol Chem. 1992 Jun 5;267(16):11619–11625. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES