Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Apr 2;121(2):365–374. doi: 10.1083/jcb.121.2.365

The role of calcium in the Chlamydomonas reinhardtii mating reaction

PMCID: PMC2200104  PMID: 8385672

Abstract

The mating reaction of Chlamydomonas reinhardtii entails a rapid series of cell-cell interactions leading to cell fusion. We have demonstrated (Pasquale, S. M., and U. Goodenough. 1987. J. Cell Biol. 105:2279-2293) that cAMP plays a key role in this process: gametic flagellar adhesion elicits a sharp increase in intracellular cAMP, and presentation of dibutyryl-cAMP to unmated gametes elicits all known mating responses. The present study evaluates the role of Ca2+ in this system. We document that the mating-induced increase in cAMP, and hence the mating responses themselves, are blocked by a variety of drugs known to interfere with Ca(2+)-sensitive processes. These data suggest that Ca(2+)-mediated events may couple adhesion to the generation of cAMP. Such events, however, appear to be localized to the flagellar membrane; we find no evidence for the mating-related increase in cytosolic free Ca2+ that has been postulated by others. Indeed, by monitoring the length of the Ca(2+)-sensitive centrin-containing nucleus-basal body connector, we show that cytosolic free Ca2+ levels, if anything, decrease in response to cAMP signaling. We confirm a previous report that Ca2+ levels increase in the mating medium, but document that this represents a response to augmented cAMP levels and not a prelude. Finally, we show that IP3 levels remain constant throughout the mating reaction. These results are discussed in terms of the various signal transduction systems that have now been identified in Chlamydomonas.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allbritton N. L., Meyer T., Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992 Dec 11;258(5089):1812–1815. doi: 10.1126/science.1465619. [DOI] [PubMed] [Google Scholar]
  2. Azarnia R., Chambers E. L. The role of divalent cations in activation of the sea urchin egg. I. Effect of fertilization on divalent cation content. J Exp Zool. 1976 Oct;198(1):65–77. doi: 10.1002/jez.1401980109. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  4. Bloodgood R. A., Levin E. N. Transient increase in calcium efflux accompanies fertilization in Chlamydomonas. J Cell Biol. 1983 Aug;97(2):397–404. doi: 10.1083/jcb.97.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bloodgood R. A., Salomonsky N. L. Calcium influx regulates antibody-induced glycoprotein movements within the Chlamydomonas flagellar membrane. J Cell Sci. 1990 May;96(Pt 1):27–33. doi: 10.1242/jcs.96.1.27. [DOI] [PubMed] [Google Scholar]
  6. Bonini N. M., Gustin M. C., Nelson D. L. Regulation of ciliary motility by membrane potential in Paramecium: a role for cyclic AMP. Cell Motil Cytoskeleton. 1986;6(3):256–272. doi: 10.1002/cm.970060303. [DOI] [PubMed] [Google Scholar]
  7. Borst-Pauwels G. W. Ion transport in yeast. Biochim Biophys Acta. 1981 Dec;650(2-3):88–127. doi: 10.1016/0304-4157(81)90002-2. [DOI] [PubMed] [Google Scholar]
  8. Browning J. L., Nelson D. L. Amphipathic amines affect membrane excitability in paramecium: role for bilayer couple. Proc Natl Acad Sci U S A. 1976 Feb;73(2):452–456. doi: 10.1073/pnas.73.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cheek T. R. Calcium regulation and homeostasis. Curr Opin Cell Biol. 1991 Apr;3(2):199–205. doi: 10.1016/0955-0674(91)90139-p. [DOI] [PubMed] [Google Scholar]
  10. Detmers P. A., Condeelis J. Trifluoperazine and W-7 inhibit mating in Chlamydomonas at an early stage of gametic interaction. Exp Cell Res. 1986 Apr;163(2):317–326. doi: 10.1016/0014-4827(86)90063-7. [DOI] [PubMed] [Google Scholar]
  11. Detmers P. A., Goodenough U. W., Condeelis J. Elongation of the fertilization tubule in Chlamydomonas: new observations on the core microfilaments and the effect of transient intracellular signals on their structural integrity. J Cell Biol. 1983 Aug;97(2):522–532. doi: 10.1083/jcb.97.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goodenough U. W. Cyclic AMP enhances the sexual agglutinability of Chlamydomonas flagella. J Cell Biol. 1989 Jul;109(1):247–252. doi: 10.1083/jcb.109.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goodenough U. W., Jurivich D. Tipping and mating-structure activation induced in Chlamydomonas gametes by flagellar membrane antisera. J Cell Biol. 1978 Dec;79(3):680–693. doi: 10.1083/jcb.79.3.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gorman D. S., Levine R. P. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1665–1669. doi: 10.1073/pnas.54.6.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huang B., Mengersen A., Lee V. D. Molecular cloning of cDNA for caltractin, a basal body-associated Ca2+-binding protein: homology in its protein sequence with calmodulin and the yeast CDC31 gene product. J Cell Biol. 1988 Jul;107(1):133–140. doi: 10.1083/jcb.107.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hunnicutt G. R., Kosfiszer M. G., Snell W. J. Cell body and flagellar agglutinins in Chlamydomonas reinhardtii: the cell body plasma membrane is a reservoir for agglutinins whose migration to the flagella is regulated by a functional barrier. J Cell Biol. 1990 Oct;111(4):1605–1616. doi: 10.1083/jcb.111.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hunnicutt G. R., Snell W. J. Rapid and slow mechanisms for loss of cell adhesiveness during fertilization in Chlamydomonas. Dev Biol. 1991 Sep;147(1):216–224. doi: 10.1016/s0012-1606(05)80019-3. [DOI] [PubMed] [Google Scholar]
  18. Hyams J. S., Borisy G. G. Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J Cell Sci. 1978 Oct;33:235–253. doi: 10.1242/jcs.33.1.235. [DOI] [PubMed] [Google Scholar]
  19. Kamiya R., Witman G. B. Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. J Cell Biol. 1984 Jan;98(1):97–107. doi: 10.1083/jcb.98.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kaska D. D., Piscopo I. C., Gibor A. Intracellular calcium redistribution during mating in Chlamydomonas reinhardii. Exp Cell Res. 1985 Oct;160(2):371–379. doi: 10.1016/0014-4827(85)90183-1. [DOI] [PubMed] [Google Scholar]
  21. Koch K. W., Cook N. J., Kaupp U. B. The cGMP-dependent channel of vertebrate rod photoreceptors exists in two forms of different cGMP sensitivity and pharmacological behavior. J Biol Chem. 1987 Oct 25;262(30):14415–14421. [PubMed] [Google Scholar]
  22. Koch K. W., Kaupp U. B. Cyclic GMP directly regulates a cation conductance in membranes of bovine rods by a cooperative mechanism. J Biol Chem. 1985 Jun 10;260(11):6788–6800. [PubMed] [Google Scholar]
  23. Lansman J. B., Hess P., Tsien R. W. Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore. J Gen Physiol. 1986 Sep;88(3):321–347. doi: 10.1085/jgp.88.3.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lechleiter J., Girard S., Clapham D., Peralta E. Subcellular patterns of calcium release determined by G protein-specific residues of muscarinic receptors. Nature. 1991 Apr 11;350(6318):505–508. doi: 10.1038/350505a0. [DOI] [PubMed] [Google Scholar]
  25. Lefebvre P. A., Nordstrom S. A., Moulder J. E., Rosenbaum J. L. Flagellar elongation and shortening in Chlamydomonas. IV. Effects of flagellar detachment, regeneration, and resorption on the induction of flagellar protein synthesis. J Cell Biol. 1978 Jul;78(1):8–27. doi: 10.1083/jcb.78.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Low P. S., Lloyd D. H., Stein T. M., Rogers J. A., 3rd Calcium displacement by local anesthetics. Dependence on pH and anesthetic charge. J Biol Chem. 1979 May 25;254(10):4119–4125. [PubMed] [Google Scholar]
  27. Martin N. C., Goodenough U. W. Gametic differentiation in Chlamydomonas reinhardtii. I. Production of gametes and their fine structure. J Cell Biol. 1975 Dec;67(3):587–605. doi: 10.1083/jcb.67.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Matsuda Y., Saito T., Yamaguchi T., Kawase H. Cell wall lytic enzyme released by mating gametes of Chlamydomonas reinhardtii is a metalloprotease and digests the sodium perchlorate-insoluble component of cell wall. J Biol Chem. 1985 May 25;260(10):6373–6377. [PubMed] [Google Scholar]
  29. Miller R. J. Multiple calcium channels and neuronal function. Science. 1987 Jan 2;235(4784):46–52. doi: 10.1126/science.2432656. [DOI] [PubMed] [Google Scholar]
  30. Morejohn L. C., Fosket D. E. Inhibition of Plant Microtubule Polymerization in vitro by the Phosphoric Amide Herbicide Amiprophos-Methyl. Science. 1984 May 25;224(4651):874–876. doi: 10.1126/science.224.4651.874. [DOI] [PubMed] [Google Scholar]
  31. Morel-Laurens N. Calcium control of phototactic orientation in Chlamydomonas reinhardtii: sign and strength of response. Photochem Photobiol. 1987 Jan;45(1):119–128. doi: 10.1111/j.1751-1097.1987.tb08412.x. [DOI] [PubMed] [Google Scholar]
  32. Nathan R. D., Kanai K., Clark R. B., Giles W. Selective block of calcium current by lanthanum in single bullfrog atrial cells. J Gen Physiol. 1988 Apr;91(4):549–572. doi: 10.1085/jgp.91.4.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pasquale S. M., Goodenough U. W. Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii. J Cell Biol. 1987 Nov;105(5):2279–2292. doi: 10.1083/jcb.105.5.2279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Quarmby L. M., Yueh Y. G., Cheshire J. L., Keller L. R., Snell W. J., Crain R. C. Inositol phospholipid metabolism may trigger flagellar excision in Chlamydomonas reinhardtii. J Cell Biol. 1992 Feb;116(3):737–744. doi: 10.1083/jcb.116.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. RODRIGUEZ J., DEINHARDT F. Preparation of a semipermanent mounting medium for fluorescent antibody studies. Virology. 1960 Oct;12:316–317. doi: 10.1016/0042-6822(60)90205-1. [DOI] [PubMed] [Google Scholar]
  36. Ross E. M., Gilman A. G. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem. 1980;49:533–564. doi: 10.1146/annurev.bi.49.070180.002533. [DOI] [PubMed] [Google Scholar]
  37. Salisbury J. L., Baron A. T., Sanders M. A. The centrin-based cytoskeleton of Chlamydomonas reinhardtii: distribution in interphase and mitotic cells. J Cell Biol. 1988 Aug;107(2):635–641. doi: 10.1083/jcb.107.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Salisbury J. L. Calcium-sequestering vesicles and contractile flagellar roots. J Cell Sci. 1982 Dec;58:433–443. doi: 10.1242/jcs.58.1.433. [DOI] [PubMed] [Google Scholar]
  39. Salisbury J. L., Sanders M. A., Harpst L. Flagellar root contraction and nuclear movement during flagellar regeneration in Chlamydomonas reinhardtii. J Cell Biol. 1987 Oct;105(4):1799–1805. doi: 10.1083/jcb.105.4.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sanguinetti M. C., Jurkiewicz N. K. Lanthanum blocks a specific component of IK and screens membrane surface change in cardiac cells. Am J Physiol. 1990 Dec;259(6 Pt 2):H1881–H1889. doi: 10.1152/ajpheart.1990.259.6.H1881. [DOI] [PubMed] [Google Scholar]
  41. Schmidt J. A., Eckert R. Calcium couples flagellar reversal to photostimulation in Chlamydomonas reinhardtii. Nature. 1976 Aug 19;262(5570):713–715. doi: 10.1038/262713a0. [DOI] [PubMed] [Google Scholar]
  42. Schultz J. E., Klumpp S., Benz R., Schürhoff-Goeters W. J., Schmid A. Regulation of adenylyl cyclase from Paramecium by an intrinsic potassium conductance. Science. 1992 Jan 31;255(5044):600–603. doi: 10.1126/science.1371017. [DOI] [PubMed] [Google Scholar]
  43. Schuring F., Brederoo J., Musgrave A., van den Ende H. Increase in calcium triggers mating structure activation in Chlamydomonas eugametos. FEMS Microbiol Lett. 1990 Sep 15;59(3):237–240. doi: 10.1016/0378-1097(90)90226-g. [DOI] [PubMed] [Google Scholar]
  44. Segal R. A., Luck D. J. Phosphorylation in isolated Chlamydomonas axonemes: a phosphoprotein may mediate the Ca2+-dependent photophobic response. J Cell Biol. 1985 Nov;101(5 Pt 1):1702–1712. doi: 10.1083/jcb.101.5.1702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shih C. K., Wagner R., Feinstein S., Kanik-Ennulat C., Neff N. A dominant trifluoperazine resistance gene from Saccharomyces cerevisiae has homology with F0F1 ATP synthase and confers calcium-sensitive growth. Mol Cell Biol. 1988 Aug;8(8):3094–3103. doi: 10.1128/mcb.8.8.3094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Snell W. J., Buchanan M., Clausell A. Lidocaine reversibly inhibits fertilization in Chlamydomonas: a possible role for calcium in sexual signalling. J Cell Biol. 1982 Sep;94(3):607–612. doi: 10.1083/jcb.94.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Snell W. J., Eskue W. A., Buchanan M. J. Regulated secretion of a serine protease that activates an extracellular matrix-degrading metalloprotease during fertilization in Chlamydomonas. J Cell Biol. 1989 Oct;109(4 Pt 1):1689–1694. doi: 10.1083/jcb.109.4.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Stavis R. L., Hirschberg R. Phototaxis in Chlamydomonas reinhardtii. J Cell Biol. 1973 Nov;59(2 Pt 1):367–377. doi: 10.1083/jcb.59.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Weiss B., Levin R. M. Mechanism for selectively inhibiting the activation of cyclic nucleotide phosphodiesterase and adenylate cyclase by antipsychotic agents. Adv Cyclic Nucleotide Res. 1978;9:285–303. [PubMed] [Google Scholar]
  50. Wright R. L., Salisbury J., Jarvik J. W. A nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation. J Cell Biol. 1985 Nov;101(5 Pt 1):1903–1912. doi: 10.1083/jcb.101.5.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES