Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Nov 1;123(3):719–728. doi: 10.1083/jcb.123.3.719

Clustering of the acetylcholine receptor by the 43-kD protein: involvement of the zinc finger domain

PMCID: PMC2200117  PMID: 8227134

Abstract

A postsynaptic membrane-associated protein of M(r) 43,000 (43-kD protein) is involved in clustering of the nicotinic acetylcholine receptor (AChR) at the neuromuscular junction. Previous studies have shown that recombinant mouse 43-kD protein forms membrane-associated clusters when expressed in Xenopus oocytes. Coexpression with the AChR results in colocalization of the receptor with the 43-kD protein clusters (Froehner, S. C., C. W. Luetje, P. B. Scotland, and J. Patrick, 1990. Neuron. 5:403-410). To understand the mechanism of this clustering, we have studied the role of the carboxy-terminal region of the 43-kD protein. The amino acid sequence of this region predicts two tandem zinc finger structures followed by a serine phosphorylation site. Both Torpedo 43-kD protein and the carboxy-terminal region of the mouse 43-kD protein bind radioisotopic zinc. Mutation of two histidine residues in this predicted domain greatly attenuates zinc binding, lending support to the proposal that this region forms zinc fingers. When expressed in oocytes, the ability of this mutant 43-kD protein to form clusters is greatly reduced. Its ability to interact with AChR, however, is retained. In contrast, a mutation that eliminates the potential serine phosphorylation site has no effect on clustering of the 43-kD protein or on interaction with the AChR. These findings suggest that protein interactions via the zinc finger domain of the 43- kD protein may be important for AChR clustering at the synapse.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S., Kozma R., Lee J., Monfries C., Harden N., Lim L. The cysteine-rich domain of human proteins, neuronal chimaerin, protein kinase C and diacylglycerol kinase binds zinc. Evidence for the involvement of a zinc-dependent structure in phorbol ester binding. Biochem J. 1991 Nov 15;280(Pt 1):233–241. doi: 10.1042/bj2800233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrantes F. J., Neugebauer D. C., Zingsheim H. P. Peptide extraction by alkaline treatment is accompanied by rearrangement of the membrane-bound acetylcholine receptor from Torpedo marmorata. FEBS Lett. 1980 Mar 24;112(1):73–78. doi: 10.1016/0014-5793(80)80131-1. [DOI] [PubMed] [Google Scholar]
  3. Berg J. M. Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J Biol Chem. 1990 Apr 25;265(12):6513–6516. [PubMed] [Google Scholar]
  4. Bloch R. J., Froehner S. C. The relationship of the postsynaptic 43K protein to acetylcholine receptors in receptor clusters isolated from cultured rat myotubes. J Cell Biol. 1987 Mar;104(3):645–654. doi: 10.1083/jcb.104.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brennan C., Scotland P. B., Froehner S. C., Henderson L. P. Functional properties of acetylcholine receptors coexpressed with the 43K protein in heterologous cell systems. Dev Biol. 1992 Jan;149(1):100–111. doi: 10.1016/0012-1606(92)90267-k. [DOI] [PubMed] [Google Scholar]
  6. Bridgman P. C., Carr C., Pedersen S. E., Cohen J. B. Visualization of the cytoplasmic surface of Torpedo postsynaptic membranes by freeze-etch and immunoelectron microscopy. J Cell Biol. 1987 Oct;105(4):1829–1846. doi: 10.1083/jcb.105.4.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burden S. J., DePalma R. L., Gottesman G. S. Crosslinking of proteins in acetylcholine receptor-rich membranes: association between the beta-subunit and the 43 kd subsynaptic protein. Cell. 1983 Dec;35(3 Pt 2):687–692. doi: 10.1016/0092-8674(83)90101-0. [DOI] [PubMed] [Google Scholar]
  8. Butler M. H., Douville K., Murnane A. A., Kramarcy N. R., Cohen J. B., Sealock R., Froehner S. C. Association of the Mr 58,000 postsynaptic protein of electric tissue with Torpedo dystrophin and the Mr 87,000 postsynaptic protein. J Biol Chem. 1992 Mar 25;267(9):6213–6218. [PubMed] [Google Scholar]
  9. Campanelli J. T., Hoch W., Rupp F., Kreiner T., Scheller R. H. Agrin mediates cell contact-induced acetylcholine receptor clustering. Cell. 1991 Nov 29;67(5):909–916. doi: 10.1016/0092-8674(91)90364-5. [DOI] [PubMed] [Google Scholar]
  10. Carr C., Tyler A. N., Cohen J. B. Myristic acid is the NH2-terminal blocking group of the 43-kDa protein of Torpedo nicotinic post-synaptic membranes. FEBS Lett. 1989 Jan 16;243(1):65–69. doi: 10.1016/0014-5793(89)81219-0. [DOI] [PubMed] [Google Scholar]
  11. Ferns M. J., Hall Z. W. How many agrins does it take to make a synapse? Cell. 1992 Jul 10;70(1):1–3. doi: 10.1016/0092-8674(92)90525-h. [DOI] [PubMed] [Google Scholar]
  12. Fertuck H. C., Salpeter M. M. Localization of acetylcholine receptor by 125I-labeled alpha-bungarotoxin binding at mouse motor endplates. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1376–1378. doi: 10.1073/pnas.71.4.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Flucher B. E., Daniels M. P. Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 kd protein. Neuron. 1989 Aug;3(2):163–175. doi: 10.1016/0896-6273(89)90029-9. [DOI] [PubMed] [Google Scholar]
  14. Freemont P. S., Hanson I. M., Trowsdale J. A novel cysteine-rich sequence motif. Cell. 1991 Feb 8;64(3):483–484. doi: 10.1016/0092-8674(91)90229-r. [DOI] [PubMed] [Google Scholar]
  15. Froehner S. C., Douville K., Klink S., Culp W. J. Monoclonal antibodies to cytoplasmic domains of the acetylcholine receptor. J Biol Chem. 1983 Jun 10;258(11):7112–7120. [PubMed] [Google Scholar]
  16. Froehner S. C. Expression of RNA transcripts for the postsynaptic 43 kDa protein in innervated and denervated rat skeletal muscle. FEBS Lett. 1989 Jun 5;249(2):229–233. doi: 10.1016/0014-5793(89)80629-5. [DOI] [PubMed] [Google Scholar]
  17. Froehner S. C., Luetje C. W., Scotland P. B., Patrick J. The postsynaptic 43K protein clusters muscle nicotinic acetylcholine receptors in Xenopus oocytes. Neuron. 1990 Oct;5(4):403–410. doi: 10.1016/0896-6273(90)90079-u. [DOI] [PubMed] [Google Scholar]
  18. Froehner S. C. Regulation of ion channel distribution at synapses. Annu Rev Neurosci. 1993;16:347–368. doi: 10.1146/annurev.ne.16.030193.002023. [DOI] [PubMed] [Google Scholar]
  19. Froehner S. C. The submembrane machinery for nicotinic acetylcholine receptor clustering. J Cell Biol. 1991 Jul;114(1):1–7. doi: 10.1083/jcb.114.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Goddard A. D., Borrow J., Freemont P. S., Solomon E. Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science. 1991 Nov 29;254(5036):1371–1374. doi: 10.1126/science.1720570. [DOI] [PubMed] [Google Scholar]
  21. Gordon H., Lupa M., Bowen D., Hall Z. A muscle cell variant defective in glycosaminoglycan biosynthesis forms nerve-induced but not spontaneous clusters of the acetylcholine receptor and the 43 kDa protein. J Neurosci. 1993 Feb;13(2):586–595. doi: 10.1523/JNEUROSCI.13-02-00586.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hall Z. W., Sanes J. R. Synaptic structure and development: the neuromuscular junction. Cell. 1993 Jan;72 (Suppl):99–121. doi: 10.1016/s0092-8674(05)80031-5. [DOI] [PubMed] [Google Scholar]
  23. Hill J. A., Jr, Nghiêm H. O., Changeux J. P. Serine-specific phosphorylation of nicotinic receptor associated 43K protein. Biochemistry. 1991 Jun 4;30(22):5579–5585. doi: 10.1021/bi00236a034. [DOI] [PubMed] [Google Scholar]
  24. Hill J. A., Jr Nicotinic receptor-associated 43K protein and progressive stabilization of the postsynaptic membrane. Mol Neurobiol. 1992 Spring;6(1):1–17. doi: 10.1007/BF02935564. [DOI] [PubMed] [Google Scholar]
  25. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  26. Kakizuka A., Miller W. H., Jr, Umesono K., Warrell R. P., Jr, Frankel S. R., Murty V. V., Dmitrovsky E., Evans R. M. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell. 1991 Aug 23;66(4):663–674. doi: 10.1016/0092-8674(91)90112-c. [DOI] [PubMed] [Google Scholar]
  27. Kordeli E., Cartaud J., Nghiêm H. O., Devillers-Thiéry A., Changeux J. P. Asynchronous assembly of the acetylcholine receptor and of the 43-kD nu1 protein in the postsynaptic membrane of developing Torpedo marmorata electrocyte. J Cell Biol. 1989 Jan;108(1):127–139. doi: 10.1083/jcb.108.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. LaRochelle W. J., Froehner S. C. Comparison of the postsynaptic 43-kDa protein from muscle cells that differ in acetylcholine receptor clustering activity. J Biol Chem. 1987 Jun 15;262(17):8190–8195. [PubMed] [Google Scholar]
  29. LaRochelle W. J., Froehner S. C. Determination of the tissue distributions and relative concentrations of the postsynaptic 43-kDa protein and the acetylcholine receptor in Torpedo. J Biol Chem. 1986 Apr 25;261(12):5270–5274. [PubMed] [Google Scholar]
  30. LaRochelle W. J., Ralston E., Forsayeth J. R., Froehner S. C., Hall Z. W. Clusters of 43-kDa protein are absent from genetic variants of C2 muscle cells with reduced acetylcholine receptor expression. Dev Biol. 1989 Mar;132(1):130–138. doi: 10.1016/0012-1606(89)90211-x. [DOI] [PubMed] [Google Scholar]
  31. LaRochelle W. J., Witzemann V., Fiedler W., Froehner S. C. Developmental expression of the 43K and 58K postsynaptic membrane proteins and nicotinic acetylcholine receptors in Torpedo electrocytes. J Neurosci. 1990 Oct;10(10):3460–3467. doi: 10.1523/JNEUROSCI.10-10-03460.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. LaRochelle W. J., Wray B. E., Sealock R., Froehner S. C. Immunochemical demonstration that amino acids 360-377 of the acetylcholine receptor gamma-subunit are cytoplasmic. J Cell Biol. 1985 Mar;100(3):684–691. doi: 10.1083/jcb.100.3.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lo M. M., Garland P. B., Lamprecht J., Barnard E. A. Rotational mobility of the membrane-bound acetylcholine receptor of Torpedo electric organ measured by phosphorescence depolarisation. FEBS Lett. 1980 Mar 10;111(2):407–412. doi: 10.1016/0014-5793(80)80838-6. [DOI] [PubMed] [Google Scholar]
  34. McMahan U. J. The agrin hypothesis. Cold Spring Harb Symp Quant Biol. 1990;55:407–418. doi: 10.1101/sqb.1990.055.01.041. [DOI] [PubMed] [Google Scholar]
  35. Mitra A. K., McCarthy M. P., Stroud R. M. Three-dimensional structure of the nicotinic acetylcholine receptor and location of the major associated 43-kD cytoskeletal protein, determined at 22 A by low dose electron microscopy and x-ray diffraction to 12.5 A. J Cell Biol. 1989 Aug;109(2):755–774. doi: 10.1083/jcb.109.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Musil L. S., Carr C., Cohen J. B., Merlie J. P. Acetylcholine receptor-associated 43K protein contains covalently bound myristate. J Cell Biol. 1988 Sep;107(3):1113–1121. doi: 10.1083/jcb.107.3.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nastuk M. A., Fallon J. R. Agrin and the molecular choreography of synapse formation. Trends Neurosci. 1993 Feb;16(2):72–76. doi: 10.1016/0166-2236(93)90020-m. [DOI] [PubMed] [Google Scholar]
  38. Neubig R. R., Krodel E. K., Boyd N. D., Cohen J. B. Acetylcholine and local anesthetic binding to Torpedo nicotinic postsynaptic membranes after removal of nonreceptor peptides. Proc Natl Acad Sci U S A. 1979 Feb;76(2):690–694. doi: 10.1073/pnas.76.2.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Noakes P. G., Phillips W. D., Hanley T. A., Sanes J. R., Merlie J. P. 43K protein and acetylcholine receptors colocalize during the initial stages of neuromuscular synapse formation in vivo. Dev Biol. 1993 Jan;155(1):275–280. doi: 10.1006/dbio.1993.1025. [DOI] [PubMed] [Google Scholar]
  40. Pan T., Coleman J. E. GAL4 transcription factor is not a "zinc finger" but forms a Zn(II)2Cys6 binuclear cluster. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2077–2081. doi: 10.1073/pnas.87.6.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Peng H. B., Froehner S. C. Association of the postsynaptic 43K protein with newly formed acetylcholine receptor clusters in cultured muscle cells. J Cell Biol. 1985 May;100(5):1698–1705. doi: 10.1083/jcb.100.5.1698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Phillips W. D., Kopta C., Blount P., Gardner P. D., Steinbach J. H., Merlie J. P. ACh receptor-rich membrane domains organized in fibroblasts by recombinant 43-kildalton protein. Science. 1991 Feb 1;251(4993):568–570. doi: 10.1126/science.1703661. [DOI] [PubMed] [Google Scholar]
  43. Phillips W. D., Maimone M. M., Merlie J. P. Mutagenesis of the 43-kD postsynaptic protein defines domains involved in plasma membrane targeting and AChR clustering. J Cell Biol. 1991 Dec;115(6):1713–1723. doi: 10.1083/jcb.115.6.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Porter S., Froehner S. C. Interaction of the 43K protein with components of Torpedo postsynaptic membranes. Biochemistry. 1985 Jan 15;24(2):425–432. doi: 10.1021/bi00323a028. [DOI] [PubMed] [Google Scholar]
  45. Pradier L., Yee A. S., McNamee M. G. Use of chemical modifications and site-directed mutagenesis to probe the functional role of thiol groups on the gamma subunit of Torpedo californica acetylcholine receptor. Biochemistry. 1989 Aug 8;28(16):6562–6571. doi: 10.1021/bi00442a006. [DOI] [PubMed] [Google Scholar]
  46. Quest A. F., Bloomenthal J., Bardes E. S., Bell R. M. The regulatory domain of protein kinase C coordinates four atoms of zinc. J Biol Chem. 1992 May 15;267(14):10193–10197. [PubMed] [Google Scholar]
  47. Reddy B. A., Etkin L. D., Freemont P. S. A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends Biochem Sci. 1992 Sep;17(9):344–345. doi: 10.1016/0968-0004(92)90308-v. [DOI] [PubMed] [Google Scholar]
  48. Ross A., Rapuano M., Prives J. Induction of phosphorylation and cell surface redistribution of acetylcholine receptors by phorbol ester and carbamylcholine in cultured chick muscle cells. J Cell Biol. 1988 Sep;107(3):1139–1145. doi: 10.1083/jcb.107.3.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Rousselet A., Cartaud J., Devaux P. F., Changeux J. P. The rotational diffusion of the acetylcholine receptor in Torpeda marmorata membrane fragments studied with a spin-labelled alpha-toxin: importance of the 43 000 protein(s). EMBO J. 1982;1(4):439–445. doi: 10.1002/j.1460-2075.1982.tb01188.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sadler I., Crawford A. W., Michelsen J. W., Beckerle M. C. Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton. J Cell Biol. 1992 Dec;119(6):1573–1587. doi: 10.1083/jcb.119.6.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Schwabe J. W., Rhodes D. Beyond zinc fingers: steroid hormone receptors have a novel structural motif for DNA recognition. Trends Biochem Sci. 1991 Aug;16(8):291–296. doi: 10.1016/0968-0004(91)90121-b. [DOI] [PubMed] [Google Scholar]
  53. Sealock R., Wray B. E., Froehner S. C. Ultrastructural localization of the Mr 43,000 protein and the acetylcholine receptor in Torpedo postsynaptic membranes using monoclonal antibodies. J Cell Biol. 1984 Jun;98(6):2239–2244. doi: 10.1083/jcb.98.6.2239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Toyoshima C., Unwin N. Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes. Nature. 1988 Nov 17;336(6196):247–250. doi: 10.1038/336247a0. [DOI] [PubMed] [Google Scholar]
  55. Treich I., Riva M., Sentenac A. Zinc-binding subunits of yeast RNA polymerases. J Biol Chem. 1991 Nov 15;266(32):21971–21976. [PubMed] [Google Scholar]
  56. Vallee B. L., Auld D. S. Cocatalytic zinc motifs in enzyme catalysis. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2715–2718. doi: 10.1073/pnas.90.7.2715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Vallee B. L., Coleman J. E., Auld D. S. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):999–1003. doi: 10.1073/pnas.88.3.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Vallee B. L., Galdes A. The metallobiochemistry of zinc enzymes. Adv Enzymol Relat Areas Mol Biol. 1984;56:283–430. doi: 10.1002/9780470123027.ch5. [DOI] [PubMed] [Google Scholar]
  59. Wallace B. G. Regulation of agrin-induced acetylcholine receptor aggregation by Ca++ and phorbol ester. J Cell Biol. 1988 Jul;107(1):267–278. doi: 10.1083/jcb.107.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Yoshihara C. M., Hall Z. W. Increased expression of the 43-kD protein disrupts acetylcholine receptor clustering in myotubes. J Cell Biol. 1993 Jul;122(1):169–179. doi: 10.1083/jcb.122.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES