Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Nov 1;123(3):627–635. doi: 10.1083/jcb.123.3.627

PDGF stimulation induces phosphorylation of talin and cytoskeletal reorganization in skeletal muscle

PMCID: PMC2200124  PMID: 7693714

Abstract

Modifications in the interactions of the muscle cytoskeleton with the cell membrane occur during cell growth and adaptation, although the mechanisms regulating these interactions are unknown. We have observed that myotendinous junctions (MTJs), which are the primary sites of turnover of the thin filament-membrane associations in skeletal muscle, are greatly enriched in receptors for PDGF. The high concentration of PDGF receptors at MTJs suggested to us that receptor binding may initiate cytoskeletal remodeling in skeletal muscle. We tested this possibility by examining the organization and phosphorylation of cytoskeletal components of L6 myocytes after PDGF stimulation. We have found that 10 min after PDGF stimulation, L6 myoblasts exhibit no stress fibers discernible by phalloidin binding, and that vinculin relocates from focal contacts into a diffuse cytoplasmic distribution. After 60 min of incubation, these changes are largely reversed. Indirect immunofluorescence shows that at 10-min PDGF stimulation, there are no changes in the distribution of talin, the beta 1 subunit of integrin, pp125FAK or desmin. Phosphotyrosine distribution changes upon stimulation from focal contacts to being located both in focal contacts and granules concentrated in perinuclear regions. These granules also immunolabel with anti-PDGF receptor Immunoprecipitations with anti-phosphotyrosine show that polypeptides at 180 and 230 kD show the greatest increase in tyrosine phosphorylation after PDGF stimulation. Immunoblots of anti-phosphotyrosine precipitates show that these polypeptides are the PDGF receptor and talin. We also examined the possibility that the cytoskeletal reorganization observed may result from calpain activation caused by elevated intracellular calcium induced by PDGF stimulation. However, immunoblots of control and stimulated cells show no decrease in the inactive calpain proenzyme or increase in the proteolytic, autolyzed forms of calpain pursuant to stimulation. Furthermore, stimulation produces no increase in the proportion of the 190-kD talin fragment characteristic of calpain- mediated cleavage. The retention of talin and integrin at focal contacts after talin phosphorylation, while vinculin is redistributed, indicate that phosphorylation of talin in PDGF-stimulated cells leads to separation of talin-vinculin associations but not talin-integrin associations. We propose that PDGF binding to PDGF receptors at MTJs may provide one means of regulating myofibril associations with the muscle cell membrane.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelstein R. S., Conti M. A. Phosphorylation of platelet myosin increases actin-activated myosin ATPase activity. Nature. 1975 Aug 14;256(5518):597–598. doi: 10.1038/256597a0. [DOI] [PubMed] [Google Scholar]
  2. Beckerle M. C., Burridge K., DeMartino G. N., Croall D. E. Colocalization of calcium-dependent protease II and one of its substrates at sites of cell adhesion. Cell. 1987 Nov 20;51(4):569–577. doi: 10.1016/0092-8674(87)90126-7. [DOI] [PubMed] [Google Scholar]
  3. Beckerle M. C., O'Halloran T., Burridge K. Demonstration of a relationship between talin and P235, a major substrate of the calcium-dependent protease in platelets. J Cell Biochem. 1986;30(3):259–270. doi: 10.1002/jcb.240300307. [DOI] [PubMed] [Google Scholar]
  4. Bozyczko D., Decker C., Muschler J., Horwitz A. F. Integrin on developing and adult skeletal muscle. Exp Cell Res. 1989 Jul;183(1):72–91. doi: 10.1016/0014-4827(89)90419-9. [DOI] [PubMed] [Google Scholar]
  5. Burn P., Kupfer A., Singer S. J. Dynamic membrane-cytoskeletal interactions: specific association of integrin and talin arises in vivo after phorbol ester treatment of peripheral blood lymphocytes. Proc Natl Acad Sci U S A. 1988 Jan;85(2):497–501. doi: 10.1073/pnas.85.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burridge K., Mangeat P. An interaction between vinculin and talin. Nature. 1984 Apr 19;308(5961):744–746. doi: 10.1038/308744a0. [DOI] [PubMed] [Google Scholar]
  7. Burridge K., Turner C. E., Romer L. H. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol. 1992 Nov;119(4):893–903. doi: 10.1083/jcb.119.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Croall D. E., Slaughter C. A., Wortham H. S., Skelly C. M., DeOgny L., Moomaw C. R. Polyclonal antisera specific for the proenzyme form of each calpain. Biochim Biophys Acta. 1992 May 22;1121(1-2):47–53. doi: 10.1016/0167-4838(92)90335-b. [DOI] [PubMed] [Google Scholar]
  9. Danowski B. A., Imanaka-Yoshida K., Sanger J. M., Sanger J. W. Costameres are sites of force transmission to the substratum in adult rat cardiomyocytes. J Cell Biol. 1992 Sep;118(6):1411–1420. doi: 10.1083/jcb.118.6.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DeClue J. E., Martin G. S. Phosphorylation of talin at tyrosine in Rous sarcoma virus-transformed cells. Mol Cell Biol. 1987 Jan;7(1):371–378. doi: 10.1128/mcb.7.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dix D. J., Eisenberg B. R. Myosin mRNA accumulation and myofibrillogenesis at the myotendinous junction of stretched muscle fibers. J Cell Biol. 1990 Nov;111(5 Pt 1):1885–1894. doi: 10.1083/jcb.111.5.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Epstein H. F., Fischman D. A. Molecular analysis of protein assembly in muscle development. Science. 1991 Mar 1;251(4997):1039–1044. doi: 10.1126/science.1998120. [DOI] [PubMed] [Google Scholar]
  13. Evans R. R., Robson R. M., Stromer M. H. Properties of smooth muscle vinculin. J Biol Chem. 1984 Mar 25;259(6):3916–3924. [PubMed] [Google Scholar]
  14. Feinstein M. B. Release of intracellular membrane-bound calcium precedes the onset of stimulus-induced exocytosis in platelets. Biochem Biophys Res Commun. 1980 Mar 28;93(2):593–600. doi: 10.1016/0006-291x(80)91119-5. [DOI] [PubMed] [Google Scholar]
  15. Fox J. E., Austin C. D., Boyles J. K., Steffen P. K. Role of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane. J Cell Biol. 1990 Aug;111(2):483–493. doi: 10.1083/jcb.111.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fox J. E., Goll D. E., Reynolds C. C., Phillips D. R. Identification of two proteins (actin-binding protein and P235) that are hydrolyzed by endogenous Ca2+-dependent protease during platelet aggregation. J Biol Chem. 1985 Jan 25;260(2):1060–1066. [PubMed] [Google Scholar]
  17. Frackelton A. R., Jr, Tremble P. M., Williams L. T. Evidence for the platelet-derived growth factor-stimulated tyrosine phosphorylation of the platelet-derived growth factor receptor in vivo. Immunopurification using a monoclonal antibody to phosphotyrosine. J Biol Chem. 1984 Jun 25;259(12):7909–7915. [PubMed] [Google Scholar]
  18. Glenney J. R., Jr Tyrosine-phosphorylated proteins: mediators of signal transduction from the tyrosine kinases. Biochim Biophys Acta. 1992 Mar 16;1134(2):113–127. doi: 10.1016/0167-4889(92)90034-9. [DOI] [PubMed] [Google Scholar]
  19. Heldin C. H., Ek B., Rönnstrand L. Characterization of the receptor for platelet-derived growth factor on human fibroblasts. Demonstration of an intimate relationship with a 185,000-Dalton substrate for the platelet-derived growth factor-stimulated kinase. J Biol Chem. 1983 Aug 25;258(16):10054–10061. [PubMed] [Google Scholar]
  20. Hemmings B. A. Phosphorylation and proteolysis regulate the NAD-dependent glutamate dehydrogenase from Saccharomyces cerevisiae. FEBS Lett. 1980 Dec 29;122(2):297–302. doi: 10.1016/0014-5793(80)80460-1. [DOI] [PubMed] [Google Scholar]
  21. Herman B., Harrington M. A., Olashaw N. E., Pledger W. J. Identification of the cellular mechanisms responsible for platelet-derived growth factor induced alterations in cytoplasmic vinculin distribution. J Cell Physiol. 1986 Jan;126(1):115–125. doi: 10.1002/jcp.1041260116. [DOI] [PubMed] [Google Scholar]
  22. Herman B., Pledger W. J. Platelet-derived growth factor-induced alterations in vinculin and actin distribution in BALB/c-3T3 cells. J Cell Biol. 1985 Apr;100(4):1031–1040. doi: 10.1083/jcb.100.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hirst R., Horwitz A., Buck C., Rohrschneider L. Phosphorylation of the fibronectin receptor complex in cells transformed by oncogenes that encode tyrosine kinases. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6470–6474. doi: 10.1073/pnas.83.17.6470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Horwitz A., Duggan K., Buck C., Beckerle M. C., Burridge K. Interaction of plasma membrane fibronectin receptor with talin--a transmembrane linkage. Nature. 1986 Apr 10;320(6062):531–533. doi: 10.1038/320531a0. [DOI] [PubMed] [Google Scholar]
  25. Ibraghimov-Beskrovnaya O., Ervasti J. M., Leveille C. J., Slaughter C. A., Sernett S. W., Campbell K. P. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature. 1992 Feb 20;355(6362):696–702. doi: 10.1038/355696a0. [DOI] [PubMed] [Google Scholar]
  26. Ito S., Werth D. K., Richert N. D., Pastan I. Vinculin phosphorylation by the src kinase. Interaction of vinculin with phospholipid vesicles. J Biol Chem. 1983 Dec 10;258(23):14626–14631. [PubMed] [Google Scholar]
  27. Ives H. E., Daniel T. O. Interrelationship between growth factor-induced pH changes and intracellular Ca2+. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1950–1954. doi: 10.1073/pnas.84.7.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jin P., Rahm M., Claesson-Welsh L., Heldin C. H., Sejersen T. Expression of PDGF A-chain and beta-receptor genes during rat myoblast differentiation. J Cell Biol. 1990 May;110(5):1665–1672. doi: 10.1083/jcb.110.5.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kajiwara Y., Tsujinaka T., Sakon M., Kambayashi J., Ohshiro T., Murachi T., Mori T. Elucidation of calpain dependent phosphorylation of myosin light chain in human platelets. Biochem Int. 1987 Nov;15(5):935–944. [PubMed] [Google Scholar]
  30. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  31. Moolenaar W. H., Tertoolen L. G., de Laat S. W. Growth factors immediately raise cytoplasmic free Ca2+ in human fibroblasts. J Biol Chem. 1984 Jul 10;259(13):8066–8069. [PubMed] [Google Scholar]
  32. Nishimura J., Kobayashi S., Shikasho T., Kanaide H. Platelet derived growth factor induces c-fos and c-myc mRNA in rat aortic smooth muscle cells in primary culture without elevation of intracellular Ca2+ concentration. Biochem Biophys Res Commun. 1992 Nov 16;188(3):1198–1204. doi: 10.1016/0006-291x(92)91358-w. [DOI] [PubMed] [Google Scholar]
  33. O'Halloran T., Beckerle M. C., Burridge K. Identification of talin as a major cytoplasmic protein implicated in platelet activation. Nature. 1985 Oct 3;317(6036):449–451. doi: 10.1038/317449a0. [DOI] [PubMed] [Google Scholar]
  34. Pasquale E. B., Maher P. A., Singer S. J. Talin is phosphorylated on tyrosine in chicken embryo fibroblasts transformed by Rous sarcoma virus. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5507–5511. doi: 10.1073/pnas.83.15.5507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pike L. J., Bowen-Pope D. F., Ross R., Krebs E. G. Characterization of platelet-derived growth factor-stimulated phosphorylation in cell membranes. J Biol Chem. 1983 Aug 10;258(15):9383–9390. [PubMed] [Google Scholar]
  36. Rosenberg S., Stracher A., Lucas R. C. Isolation and characterization of actin and actin-binding protein from human platelets. J Cell Biol. 1981 Oct;91(1):201–211. doi: 10.1083/jcb.91.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rosenfeld M. E., Bowen-Pope D. F., Ross R. Platelet-derived growth factor: morphologic and biochemical studies of binding, internalization, and degradation. J Cell Physiol. 1984 Nov;121(2):263–274. doi: 10.1002/jcp.1041210202. [DOI] [PubMed] [Google Scholar]
  38. Samitt C. E., Bonilla E. Immunocytochemical study of dystrophin at the myotendinous junction. Muscle Nerve. 1990 Jun;13(6):493–500. doi: 10.1002/mus.880130605. [DOI] [PubMed] [Google Scholar]
  39. Sefton B. M., Hunter T., Ball E. H., Singer S. J. Vinculin: a cytoskeletal target of the transforming protein of Rous sarcoma virus. Cell. 1981 Apr;24(1):165–174. doi: 10.1016/0092-8674(81)90512-2. [DOI] [PubMed] [Google Scholar]
  40. Shear C. R., Bloch R. J. Vinculin in subsarcolemmal densities in chicken skeletal muscle: localization and relationship to intracellular and extracellular structures. J Cell Biol. 1985 Jul;101(1):240–256. doi: 10.1083/jcb.101.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shimokado K., Raines E. W., Madtes D. K., Barrett T. B., Benditt E. P., Ross R. A significant part of macrophage-derived growth factor consists of at least two forms of PDGF. Cell. 1985 Nov;43(1):277–286. doi: 10.1016/0092-8674(85)90033-9. [DOI] [PubMed] [Google Scholar]
  42. Spencer M. J., Tidball J. G. Calpain concentration is elevated although net calcium-dependent proteolysis is suppressed in dystrophin-deficient muscle. Exp Cell Res. 1992 Nov;203(1):107–114. doi: 10.1016/0014-4827(92)90045-a. [DOI] [PubMed] [Google Scholar]
  43. Swasdison S., Mayne R. Location of the integrin complex and extracellular matrix molecules at the chicken myotendinous junction. Cell Tissue Res. 1989 Sep;257(3):537–543. doi: 10.1007/BF00221463. [DOI] [PubMed] [Google Scholar]
  44. Tapley P., Horwitz A., Buck C., Duggan K., Rohrschneider L. Integrins isolated from Rous sarcoma virus-transformed chicken embryo fibroblasts. Oncogene. 1989 Mar;4(3):325–333. [PubMed] [Google Scholar]
  45. Tidball J. G. Desmin at myotendinous junctions. Exp Cell Res. 1992 Apr;199(2):206–212. doi: 10.1016/0014-4827(92)90425-8. [DOI] [PubMed] [Google Scholar]
  46. Tidball J. G., Lin C. Structural changes at the myogenic cell surface during the formation of myotendinous junctions. Cell Tissue Res. 1989 Jul;257(1):77–84. doi: 10.1007/BF00221636. [DOI] [PubMed] [Google Scholar]
  47. Tidball J. G., O'Halloran T., Burridge K. Talin at myotendinous junctions. J Cell Biol. 1986 Oct;103(4):1465–1472. doi: 10.1083/jcb.103.4.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tidball J. G., Quan D. M. Reduction in myotendinous junction surface area of rats subjected to 4-day spaceflight. J Appl Physiol (1985) 1992 Jul;73(1):59–64. doi: 10.1152/jappl.1992.73.1.59. [DOI] [PubMed] [Google Scholar]
  49. Tidball J. G., Spencer M. J., St Pierre B. A. PDGF-receptor concentration is elevated in regenerative muscle fibers in dystrophin-deficient muscle. Exp Cell Res. 1992 Nov;203(1):141–149. doi: 10.1016/0014-4827(92)90049-e. [DOI] [PubMed] [Google Scholar]
  50. Tram K. K., Spencer M. J., Murray S. S., Lee D. B., Tidball J. G., Murray E. J. Identification of calcium-activated neutral protease activity and regulation by parathyroid hormone in mouse osteoblastic cells. Biochem Mol Biol Int. 1993 Apr;29(5):981–987. [PubMed] [Google Scholar]
  51. Tsujinaka T., Kajiwara Y., Kambayashi J., Sakon M., Mori T. Studies on myosin light chain phosphorylation in intact platelets, utilizing a cell-penetrating thiol protease inhibitor. Thromb Res. 1988 Aug 15;51(4):365–372. doi: 10.1016/0049-3848(88)90372-6. [DOI] [PubMed] [Google Scholar]
  52. Turner C. E., Pavalko F. M., Burridge K. The role of phosphorylation and limited proteolytic cleavage of talin and vinculin in the disruption of focal adhesion integrity. J Biol Chem. 1989 Jul 15;264(20):11938–11944. [PubMed] [Google Scholar]
  53. Turner C. E. Paxillin is a major phosphotyrosine-containing protein during embryonic development. J Cell Biol. 1991 Oct;115(1):201–207. doi: 10.1083/jcb.115.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Venkatasubramanian K., Solursh M. Chemotactic behavior of myoblasts. Dev Biol. 1984 Aug;104(2):428–433. doi: 10.1016/0012-1606(84)90098-8. [DOI] [PubMed] [Google Scholar]
  55. Yablonka-Reuveni Z., Balestreri T. M., Bowen-Pope D. F. Regulation of proliferation and differentiation of myoblasts derived from adult mouse skeletal muscle by specific isoforms of PDGF. J Cell Biol. 1990 Oct;111(4):1623–1629. doi: 10.1083/jcb.111.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zamora A. J., Marini J. F. Tendon and myo-tendinous junction in an overloaded skeletal muscle of the rat. Anat Embryol (Berl) 1988;179(1):89–96. doi: 10.1007/BF00305103. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES