Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Nov 1;123(3):707–718. doi: 10.1083/jcb.123.3.707

Differential regulation of multiple gap junction transcripts and proteins during rat liver regeneration

PMCID: PMC2200133  PMID: 8227133

Abstract

The mRNA and protein expression of alpha 1 (connexin 43), beta 1 (connexin 32), and beta 2 (connexin 26) gap junction genes were examined in the regenerating rat liver after 70% partial hepatectomy (PH). Expression of beta 1 and beta 2 steady-state mRNA levels changed minimally until 12 h after PH when both transcripts decreased to approximately 15% of baseline values. A similar decrease in assembled connexin levels was detected by immunoblot and indirect immunofluorescence at 18 h after PH. Both transcripts simultaneously increased between 24 and 42 h and again rapidly decreased by 48 h post- PH. beta 1 and beta 2 assembled gap junction protein expression increased at 48 h post-PH and rapidly decreased by 56 h. By 72 to 84 h post-PH, beta 1 and beta 2 mRNA and assembled protein expression returned to near baseline levels and were maintained. Interestingly, inhibition of protein synthesis with cycloheximide completely inhibited disappearance of the beta 2 transcript, in contrast to beta 1 mRNA which was unaffected. Nuclear run-on assays showed no change in transcriptional rates for either gene during the regenerative period. However, both beta 1 and beta 2 transcripts exhibited significantly decreased mRNA half-lives at 12 h post-PH (3.8 and 3.7 h, respectively) relative to those at 0 h (10.9 and 6.1 h, respectively). Surprisingly, although the transcriptional rate for alpha 1 was similar to that observed for beta 2, no alpha 1 transcripts were detectable by northern or RNase protection analysis. The results suggest that in the regenerating rat liver, beta 1 and beta 2 gap junction genes are not regulated at the transcriptional level. Rather, the cyclical modulation of their steady-state transcripts is regulated primarily by posttranscriptional events of which mRNA stability is at least one critical factor in the control process.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloni R., Peleg D., Meyuhas O. Selective translational control and nonspecific posttranscriptional regulation of ribosomal protein gene expression during development and regeneration of rat liver. Mol Cell Biol. 1992 May;12(5):2203–2212. doi: 10.1128/mcb.12.5.2203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartles J. R., Zhang L. Q., Verheyen E. M., Hospodar K. S., Nehme C. L., Fayos B. E. Decreases in the relative concentrations of specific hepatocyte plasma membrane proteins during liver regeneration: down-regulation or dilution? Dev Biol. 1991 Feb;143(2):258–270. doi: 10.1016/0012-1606(91)90076-f. [DOI] [PubMed] [Google Scholar]
  3. Beer D. G., Neveu M. J., Paul D. L., Rapp U. R., Pitot H. C. Expression of the c-raf protooncogene, gamma-glutamyltranspeptidase, and gap junction protein in rat liver neoplasms. Cancer Res. 1988 Mar 15;48(6):1610–1617. [PubMed] [Google Scholar]
  4. Bernstein P. L., Herrick D. J., Prokipcak R. D., Ross J. Control of c-myc mRNA half-life in vitro by a protein capable of binding to a coding region stability determinant. Genes Dev. 1992 Apr;6(4):642–654. doi: 10.1101/gad.6.4.642. [DOI] [PubMed] [Google Scholar]
  5. Beyer E. C., Paul D. L., Goodenough D. A. Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol. 1987 Dec;105(6 Pt 1):2621–2629. doi: 10.1083/jcb.105.6.2621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brewer G. An A + U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol Cell Biol. 1991 May;11(5):2460–2466. doi: 10.1128/mcb.11.5.2460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chelly J., Concordet J. P., Kaplan J. C., Kahn A. Illegitimate transcription: transcription of any gene in any cell type. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2617–2621. doi: 10.1073/pnas.86.8.2617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Cohen J. B., Broz S. D., Levinson A. D. Expression of the H-ras proto-oncogene is controlled by alternative splicing. Cell. 1989 Aug 11;58(3):461–472. doi: 10.1016/0092-8674(89)90427-3. [DOI] [PubMed] [Google Scholar]
  10. Correa-Rotter R., Mariash C. N., Rosenberg M. E. Loading and transfer control for Northern hybridization. Biotechniques. 1992 Feb;12(2):154–158. [PubMed] [Google Scholar]
  11. De Sousa P. A., Valdimarsson G., Nicholson B. J., Kidder G. M. Connexin trafficking and the control of gap junction assembly in mouse preimplantation embryos. Development. 1993 Apr;117(4):1355–1367. doi: 10.1242/dev.117.4.1355. [DOI] [PubMed] [Google Scholar]
  12. Dermietzel R., Yancey S. B., Traub O., Willecke K., Revel J. P. Major loss of the 28-kD protein of gap junction in proliferating hepatocytes. J Cell Biol. 1987 Oct;105(4):1925–1934. doi: 10.1083/jcb.105.4.1925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Diehl A. M., Thorgeirsson S. S., Steer C. J. Ethanol inhibits liver regeneration in rats without reducing transcripts of key protooncogenes. Gastroenterology. 1990 Oct;99(4):1105–1112. doi: 10.1016/0016-5085(90)90631-a. [DOI] [PubMed] [Google Scholar]
  14. Diehl A. M., Wells M., Brown N. D., Thorgeirsson S. S., Steer C. J. Effect of ethanol on polyamine synthesis during liver regeneration in rats. J Clin Invest. 1990 Feb;85(2):385–390. doi: 10.1172/JCI114450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Diehl A. M., Yang S. Q., Wolfgang D., Wand G. Differential expression of guanine nucleotide-binding proteins enhances cAMP synthesis in regenerating rat liver. J Clin Invest. 1992 Jun;89(6):1706–1712. doi: 10.1172/JCI115771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  17. Gaasbeek Janzen J. W., Lamers W. H., Moorman A. F., de Graaf A., Los J. A., Charles R. Immunohistochemical localization of carbamoyl-phosphate synthetase (ammonia) in adult rat liver; evidence for a heterogeneous distribution. J Histochem Cytochem. 1984 Jun;32(6):557–564. doi: 10.1177/32.6.6373912. [DOI] [PubMed] [Google Scholar]
  18. Glück U., Rodríguez Fernández J. L., Pankov R., Ben-Ze'ev A. Regulation of adherens junction protein expression in growth-activated 3T3 cells and in regenerating liver. Exp Cell Res. 1992 Oct;202(2):477–486. doi: 10.1016/0014-4827(92)90102-e. [DOI] [PubMed] [Google Scholar]
  19. Gross M. K., Merrill G. F. Thymidine kinase synthesis is repressed in nonreplicating muscle cells by a translational mechanism that does not affect the polysomal distribution of thymidine kinase mRNA. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4987–4991. doi: 10.1073/pnas.86.13.4987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gudas J. M., Knight G. B., Pardee A. B. Nuclear posttranscriptional processing of thymidine kinase mRNA at the onset of DNA synthesis. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4705–4709. doi: 10.1073/pnas.85.13.4705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Haber B. A., Mohn K. L., Diamond R. H., Taub R. Induction patterns of 70 genes during nine days after hepatectomy define the temporal course of liver regeneration. J Clin Invest. 1993 Apr;91(4):1319–1326. doi: 10.1172/JCI116332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hendrix E. M., Lomneth C. S., Wilfinger W. W., Hertzberg E. L., Mao S. J., Chen L., Larsen W. J. Quantitative immunoassay of total cellular GAP junction protein connexin32 during liver regeneration using antibodies specific to the COOH-terminus. Tissue Cell. 1992;24(1):61–73. doi: 10.1016/0040-8166(92)90081-h. [DOI] [PubMed] [Google Scholar]
  23. Hendrix E. M., Mao S. J., Everson W., Larsen W. J. Myometrial connexin 43 trafficking and gap junction assembly at term and in preterm labor. Mol Reprod Dev. 1992 Sep;33(1):27–38. doi: 10.1002/mrd.1080330105. [DOI] [PubMed] [Google Scholar]
  24. Hofbauer R., Denhardt D. T. Cell cycle-regulated and proliferation stimulus-responsive genes. Crit Rev Eukaryot Gene Expr. 1991;1(4):247–300. [PubMed] [Google Scholar]
  25. Holland E. C., Leung J. O., Drickamer K. Rat liver asialoglycoprotein receptor lacks a cleavable NH2-terminal signal sequence. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7338–7342. doi: 10.1073/pnas.81.23.7338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Iwai M., Miyashita T., Shimazu T. Inhibition of glucose production during hepatic nerve stimulation in regenerating rat liver perfused in situ. Possible involvement of gap junctions in the action of sympathetic nerves. Eur J Biochem. 1991 Aug 15;200(1):69–74. doi: 10.1111/j.1432-1033.1991.tb21049.x. [DOI] [PubMed] [Google Scholar]
  27. Johnson T. R., Rudin S. D., Blossey B. K., Ilan J., Ilan J. Newly synthesized RNA: simultaneous measurement in intact cells of transcription rates and RNA stability of insulin-like growth factor I, actin, and albumin in growth hormone-stimulated hepatocytes. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5287–5291. doi: 10.1073/pnas.88.12.5287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Klausner R. D., Rouault T. A., Harford J. B. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell. 1993 Jan 15;72(1):19–28. doi: 10.1016/0092-8674(93)90046-s. [DOI] [PubMed] [Google Scholar]
  29. Kumar N. M., Gilula N. B. Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J Cell Biol. 1986 Sep;103(3):767–776. doi: 10.1083/jcb.103.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kumar N. M., Gilula N. B. Molecular biology and genetics of gap junction channels. Semin Cell Biol. 1992 Feb;3(1):3–16. doi: 10.1016/s1043-4682(10)80003-0. [DOI] [PubMed] [Google Scholar]
  31. Kuo F. C., Darnell J. E., Jr Evidence that interaction of hepatocytes with the collecting (hepatic) veins triggers position-specific transcription of the glutamine synthetase and ornithine aminotransferase genes in the mouse liver. Mol Cell Biol. 1991 Dec;11(12):6050–6058. doi: 10.1128/mcb.11.12.6050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lee S. W., Tomasetto C., Paul D., Keyomarsi K., Sager R. Transcriptional downregulation of gap-junction proteins blocks junctional communication in human mammary tumor cell lines. J Cell Biol. 1992 Sep;118(5):1213–1221. doi: 10.1083/jcb.118.5.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Leppard K. N., Shenk T. The adenovirus E1B 55 kd protein influences mRNA transport via an intranuclear effect on RNA metabolism. EMBO J. 1989 Aug;8(8):2329–2336. doi: 10.1002/j.1460-2075.1989.tb08360.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Levy J. R., Hug V. Regulation of insulin receptor gene expression. Cell cycle-mediated effects on insulin receptor mRNA stability. J Biol Chem. 1992 Dec 15;267(35):25289–25295. [PubMed] [Google Scholar]
  35. Loewenstein W. R., Rose B. The cell-cell channel in the control of growth. Semin Cell Biol. 1992 Feb;3(1):59–79. doi: 10.1016/s1043-4682(10)80008-x. [DOI] [PubMed] [Google Scholar]
  36. Martinez-Hernandez A., Delgado F. M., Amenta P. S. The extracellular matrix in hepatic regeneration. Localization of collagen types I, III, IV, laminin, and fibronectin. Lab Invest. 1991 Feb;64(2):157–166. [PubMed] [Google Scholar]
  37. Meyer D. J., Yancey S. B., Revel J. P. Intercellular communication in normal and regenerating rat liver: a quantitative analysis. J Cell Biol. 1981 Nov;91(2 Pt 1):505–523. doi: 10.1083/jcb.91.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Milks L. C., Kumar N. M., Houghten R., Unwin N., Gilula N. B. Topology of the 32-kd liver gap junction protein determined by site-directed antibody localizations. EMBO J. 1988 Oct;7(10):2967–2975. doi: 10.1002/j.1460-2075.1988.tb03159.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Milland J., Tsykin A., Thomas T., Aldred A. R., Cole T., Schreiber G. Gene expression in regenerating and acute-phase rat liver. Am J Physiol. 1990 Sep;259(3 Pt 1):G340–G347. doi: 10.1152/ajpgi.1990.259.3.G340. [DOI] [PubMed] [Google Scholar]
  40. Miyashita T., Takeda A., Iwai M., Shimazu T. Single administration of hepatotoxic chemicals transiently decreases the gap-junction-protein levels of connexin 32 in rat liver. Eur J Biochem. 1991 Feb 26;196(1):37–42. doi: 10.1111/j.1432-1033.1991.tb15782.x. [DOI] [PubMed] [Google Scholar]
  41. Morello D., Lavenu A., Babinet C. Differential regulation and expression of jun, c-fos and c-myc proto-oncogenes during mouse liver regeneration and after inhibition of protein synthesis. Oncogene. 1990 Oct;5(10):1511–1519. [PubMed] [Google Scholar]
  42. Nicholson B., Dermietzel R., Teplow D., Traub O., Willecke K., Revel J. P. Two homologous protein components of hepatic gap junctions. Nature. 1987 Oct 22;329(6141):732–734. doi: 10.1038/329732a0. [DOI] [PubMed] [Google Scholar]
  43. Noguchi S., Ohba Y., Oka T. The role of transcription and messenger RNA stability in the regulation of epidermal growth factor receptor gene expression in regenerating mouse liver. Hepatology. 1992 Jan;15(1):88–96. doi: 10.1002/hep.1840150117. [DOI] [PubMed] [Google Scholar]
  44. Oyamada M., Krutovskikh V. A., Mesnil M., Partensky C., Berger F., Yamasaki H. Aberrant expression of gap junction gene in primary human hepatocellular carcinomas: increased expression of cardiac-type gap junction gene connexin 43. Mol Carcinog. 1990;3(5):273–278. doi: 10.1002/mc.2940030507. [DOI] [PubMed] [Google Scholar]
  45. Piñol-Roma S., Dreyfuss G. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature. 1992 Feb 20;355(6362):730–732. doi: 10.1038/355730a0. [DOI] [PubMed] [Google Scholar]
  46. Rahman S., Carlile G., Evans W. H. Assembly of hepatic gap junctions. Topography and distribution of connexin 32 in intracellular and plasma membranes determined using sequence-specific antibodies. J Biol Chem. 1993 Jan 15;268(2):1260–1265. [PubMed] [Google Scholar]
  47. Risek B., Guthrie S., Kumar N., Gilula N. B. Modulation of gap junction transcript and protein expression during pregnancy in the rat. J Cell Biol. 1990 Feb;110(2):269–282. doi: 10.1083/jcb.110.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Roitelman J., Simoni R. D. Distinct sterol and nonsterol signals for the regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase. J Biol Chem. 1992 Dec 15;267(35):25264–25273. [PubMed] [Google Scholar]
  49. Rosenberg E., Spray D. C., Reid L. M. Transcriptional and posttranscriptional control of connexin mRNAs in periportal and pericentral rat hepatocytes. Eur J Cell Biol. 1992 Oct;59(1):21–26. [PubMed] [Google Scholar]
  50. Russell W. E., Coffey R. J., Jr, Ouellette A. J., Moses H. L. Type beta transforming growth factor reversibly inhibits the early proliferative response to partial hepatectomy in the rat. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5126–5130. doi: 10.1073/pnas.85.14.5126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sakamoto H., Oyamada M., Enomoto K., Mori M. Differential changes in expression of gap junction proteins connexin 26 and 32 during hepatocarcinogenesis in rats. Jpn J Cancer Res. 1992 Nov;83(11):1210–1215. doi: 10.1111/j.1349-7006.1992.tb02747.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Savant-Bhonsale S., Cleveland D. W. Evidence for instability of mRNAs containing AUUUA motifs mediated through translation-dependent assembly of a > 20S degradation complex. Genes Dev. 1992 Oct;6(10):1927–1939. doi: 10.1101/gad.6.10.1927. [DOI] [PubMed] [Google Scholar]
  53. Shyu A. B., Greenberg M. E., Belasco J. G. The c-fos transcript is targeted for rapid decay by two distinct mRNA degradation pathways. Genes Dev. 1989 Jan;3(1):60–72. doi: 10.1101/gad.3.1.60. [DOI] [PubMed] [Google Scholar]
  54. Simonet W. S., Ness G. C. Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA in rat liver. Glucocorticoids block the stabilization caused by thyroid hormones. J Biol Chem. 1989 Jan 5;264(1):569–573. [PubMed] [Google Scholar]
  55. Sobczak J., Mechti N., Tournier M. F., Blanchard J. M., Duguet M. c-myc and c-fos gene regulation during mouse liver regeneration. Oncogene. 1989 Dec;4(12):1503–1508. [PubMed] [Google Scholar]
  56. Spray D. C., Fujita M., Saez J. C., Choi H., Watanabe T., Hertzberg E., Rosenberg L. C., Reid L. M. Proteoglycans and glycosaminoglycans induce gap junction synthesis and function in primary liver cultures. J Cell Biol. 1987 Jul;105(1):541–551. doi: 10.1083/jcb.105.1.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Stutenkemper R., Geisse S., Schwarz H. J., Look J., Traub O., Nicholson B. J., Willecke K. The hepatocyte-specific phenotype of murine liver cells correlates with high expression of connexin32 and connexin26 but very low expression of connexin43. Exp Cell Res. 1992 Jul;201(1):43–54. doi: 10.1016/0014-4827(92)90346-a. [DOI] [PubMed] [Google Scholar]
  58. Traub O., Drüge P. M., Willecke K. Degradation and resynthesis of gap junction protein in plasma membranes of regenerating liver after partial hepatectomy or cholestasis. Proc Natl Acad Sci U S A. 1983 Feb;80(3):755–759. doi: 10.1073/pnas.80.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Traub O., Look J., Dermietzel R., Brümmer F., Hülser D., Willecke K. Comparative characterization of the 21-kD and 26-kD gap junction proteins in murine liver and cultured hepatocytes. J Cell Biol. 1989 Mar;108(3):1039–1051. doi: 10.1083/jcb.108.3.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Traub O., Look J., Paul D., Willecke K. Cyclic adenosine monophosphate stimulates biosynthesis and phosphorylation of the 26 kDa gap junction protein in cultured mouse hepatocytes. Eur J Cell Biol. 1987 Feb;43(1):48–54. [PubMed] [Google Scholar]
  61. Walden W. E., Patino M. M., Gaffield L. Purification of a specific repressor of ferritin mRNA translation from rabbit liver. J Biol Chem. 1989 Aug 15;264(23):13765–13769. [PubMed] [Google Scholar]
  62. Yancey S. B., Easter D., Revel J. P. Cytological changes in gap junctions during liver regeneration. J Ultrastruct Res. 1979 Jun;67(3):229–242. doi: 10.1016/s0022-5320(79)80024-6. [DOI] [PubMed] [Google Scholar]
  63. Yancey S. B., Nicholson B. J., Revel J. P. The dynamic state of liver gap junctions. J Supramol Struct Cell Biochem. 1981;16(3):221–232. doi: 10.1002/jsscb.1981.380160303. [DOI] [PubMed] [Google Scholar]
  64. Yee A. G., Revel J. P. Loss and reappearance of gap junctions in regenerating liver. J Cell Biol. 1978 Aug;78(2):554–564. doi: 10.1083/jcb.78.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Zimmer D. B., Green C. R., Evans W. H., Gilula N. B. Topological analysis of the major protein in isolated intact rat liver gap junctions and gap junction-derived single membrane structures. J Biol Chem. 1987 Jun 5;262(16):7751–7763. [PubMed] [Google Scholar]
  66. van Zoelen E. J., Tertoolen L. G. Transforming growth factor-beta enhances the extent of intercellular communication between normal rat kidney cells. J Biol Chem. 1991 Jun 25;266(18):12075–12081. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES