Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 May 1;110(5):1655–1664. doi: 10.1083/jcb.110.5.1655

Regulation of the expression of vimentin gene during the differentiation of mouse myeloid leukemia cells

PMCID: PMC2200173  PMID: 1970825

Abstract

We have examined the expression of vimentin during the differentiation of mouse myeloid leukemia cells (M1), which were induced to differentiate into macrophages by exposure to conditioned medium (CM) obtained from rat embryo fibroblasts. The synthesis of vimentin, which was examined by two-dimensional gel electrophoresis, increased after 12- 24 h of incubation of M1 cells in CM and the elevated level of synthesis continued up to 96 h. A macrophage cell line (Mm1) that was derived from spontaneously differentiated M1 cells constantly synthesized much higher levels of vimentin. The amount of vimentin, which was revealed by immunoblot analysis using an mAb against human vimentin, also increased after differentiation by a factor of 7 when compared on the basis of constant protein and by a factor of 17 on the basis of constant cell numbers. Mm1 cells contained greater than 12- and 45-fold more vimentin compared with undifferentiated M1 cells on the bases of constant protein and constant cell numbers, respectively. Northern blot analysis using vimentin cDNA as a probe revealed increases in vimentin mRNA in the differentiated M1 cells and Mm1 cells. Nuclear run-on assay showed that the expression of vimentin gene during the differentiation of M1 cells was transcriptionally regulated. Observations in indirect immunofluorescence microscopy and EM clearly showed that vimentin bundles were rarely observed in undifferentiated M1 cells, and increased amounts of and large-size vimentin bundles were easily observed in differentiated M1 and Mm1 cells. These results suggest the participation of increased amounts of vimentin filaments in the maldistribution of nuclei in M1 cells during differentiation.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ben-Ze'ev A. Inhibition of vimentin synthesis and disruption of intermediate filaments in simian virus 40-infected monkey kidney cells. Mol Cell Biol. 1984 Sep;4(9):1880–1889. doi: 10.1128/mcb.4.9.1880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Capetanaki Y. G., Ngai J., Flytzanis C. N., Lazarides E. Tissue-specific expression of two mRNA species transcribed from a single vimentin gene. Cell. 1983 Dec;35(2 Pt 1):411–420. doi: 10.1016/0092-8674(83)90174-5. [DOI] [PubMed] [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  5. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  6. Ferrari S., Battini R., Kaczmarek L., Rittling S., Calabretta B., de Riel J. K., Philiponis V., Wei J. F., Baserga R. Coding sequence and growth regulation of the human vimentin gene. Mol Cell Biol. 1986 Nov;6(11):3614–3620. doi: 10.1128/mcb.6.11.3614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gearing D. P., Gough N. M., King J. A., Hilton D. J., Nicola N. A., Simpson R. J., Nice E. C., Kelso A., Metcalf D. Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J. 1987 Dec 20;6(13):3995–4002. doi: 10.1002/j.1460-2075.1987.tb02742.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gough N. M., Gearing D. P., King J. A., Willson T. A., Hilton D. J., Nicola N. A., Metcalf D. Molecular cloning and expression of the human homologue of the murine gene encoding myeloid leukemia-inhibitory factor. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2623–2627. doi: 10.1073/pnas.85.8.2623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Granger B. L., Lazarides E. Structural associations of synemin and vimentin filaments in avian erythrocytes revealed by immunoelectron microscopy. Cell. 1982 Aug;30(1):263–275. doi: 10.1016/0092-8674(82)90032-0. [DOI] [PubMed] [Google Scholar]
  10. Greenberg M. E., Ziff E. B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature. 1984 Oct 4;311(5985):433–438. doi: 10.1038/311433a0. [DOI] [PubMed] [Google Scholar]
  11. Hayashi M., Okabe-Kado J., Hozumi M. Mechanisms controlling the kinetics in proliferation and differentiation of populations of mouse myeloid leukemic cells in vitro. J Cell Physiol. 1981 Aug;108(2):123–134. doi: 10.1002/jcp.1041080203. [DOI] [PubMed] [Google Scholar]
  12. Hirai K. I., Nagata K., Maeda M., Ichikawa Y. Changes in ultrastructures and enzyme activities during differentiation of myeloid leukemia cells to normal macrophages. Exp Cell Res. 1979 Dec;124(2):269–283. doi: 10.1016/0014-4827(79)90203-9. [DOI] [PubMed] [Google Scholar]
  13. Hozumi M. Established leukemia cell lines: their role in the understanding and control of leukemia proliferation. Crit Rev Oncol Hematol. 1985;3(3):235–277. doi: 10.1016/s1040-8428(85)80028-7. [DOI] [PubMed] [Google Scholar]
  14. Ichikawa Y. Differentiation of a cell line of myeloid leukemia. J Cell Physiol. 1969 Dec;74(3):223–234. doi: 10.1002/jcp.1040740303. [DOI] [PubMed] [Google Scholar]
  15. Ichikawa Y. Further studies on the differentiation of a cell line of myeloid leukemia. J Cell Physiol. 1970 Oct;76(2):175–184. doi: 10.1002/jcp.1040760207. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lazarides E. From genes to structural morphogenesis: the genesis and epigenesis of a red blood cell. Cell. 1987 Nov 6;51(3):345–356. doi: 10.1016/0092-8674(87)90631-3. [DOI] [PubMed] [Google Scholar]
  19. Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  20. Lilienbaum A., Legagneux V., Portier M. M., Dellagi K., Paulin D. Vimentin gene: expression in human lymphocytes and in Burkitt's lymphoma cells. EMBO J. 1986 Nov;5(11):2809–2814. doi: 10.1002/j.1460-2075.1986.tb04572.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lowe D. G., Nunes W., Bombara M., McCabe S., Ranges G. E., Henzel W., Tomida M., Yamamoto-Yamaguchi Y., Hozumi M., Goeddel D. V. Genomic cloning and heterologous expression of human differentiation-stimulating factor. DNA. 1989 Jun;8(5):351–359. doi: 10.1089/dna.1.1989.8.351. [DOI] [PubMed] [Google Scholar]
  22. Maeda M., Ichikawa Y. Spontaneous development of macrophage-like cells in a culture of myeloid leukemia cells. Gan. 1973 Jun;64(3):265–271. [PubMed] [Google Scholar]
  23. Miyaura C., Onozaki K., Akiyama Y., Taniyama T., Hirano T., Kishimoto T., Suda T. Recombinant human interleukin 6 (B-cell stimulatory factor 2) is a potent inducer of differentiation of mouse myeloid leukemia cells (M1). FEBS Lett. 1988 Jul 4;234(1):17–21. doi: 10.1016/0014-5793(88)81293-6. [DOI] [PubMed] [Google Scholar]
  24. Nagata K., Ichikawa Y. Changes in actin during cell differentiation. Cell Muscle Motil. 1984;5:171–193. doi: 10.1007/978-1-4684-4592-3_4. [DOI] [PubMed] [Google Scholar]
  25. Nagata K., Sagara J., Ichikawa Y. Changes in actin-related gelation of crude cell extracts during differentiation of myeloid leukemia cells. Cell Struct Funct. 1983 Jun;8(2):171–183. doi: 10.1247/csf.8.171. [DOI] [PubMed] [Google Scholar]
  26. Nagata K., Sagara J., Ichikawa Y. Changes in contractile proteins during differentiation of myeloid leukemia cells. I. Polymerization of actin. J Cell Biol. 1980 May;85(2):273–282. doi: 10.1083/jcb.85.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nagata K., Sagara J., Ichikawa Y. Changes in contractile proteins during differentiation of myeloid leukemia cells. II. Purification and characterization of actin. J Cell Biol. 1982 May;93(2):470–478. doi: 10.1083/jcb.93.2.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nagata K., Takagi K., Hashida T., Ichikawa Y. A monovalent cation-sensitive actin-binding factor in a myeloid leukemia cell line. Cell Struct Funct. 1985 Jun;10(2):105–120. doi: 10.1247/csf.10.105. [DOI] [PubMed] [Google Scholar]
  29. Nagata K., Takahashi E., Saito M., Ono J., Kuboyama M. Differentiation of a cell line of mouse myeloid leukemia. I. Simultaneous induction of lysosomal enzyme activities and phagocytosis. Exp Cell Res. 1976 Jul;100(2):322–328. doi: 10.1016/0014-4827(76)90155-5. [DOI] [PubMed] [Google Scholar]
  30. Ngai J., Bond V. C., Wold B. J., Lazarides E. Expression of transfected vimentin genes in differentiating murine erythroleukemia cells reveals divergent cis-acting regulation of avian and mammalian vimentin sequences. Mol Cell Biol. 1987 Nov;7(11):3955–3970. doi: 10.1128/mcb.7.11.3955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ngai J., Capetanaki Y. G., Lazarides E. Differentiation of murine erythroleukemia cells results in the rapid repression of vimentin gene expression. J Cell Biol. 1984 Jul;99(1 Pt 1):306–314. doi: 10.1083/jcb.99.1.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  33. Rittling S. R., Baserga R. Functional analysis and growth factor regulation of the human vimentin promoter. Mol Cell Biol. 1987 Nov;7(11):3908–3915. doi: 10.1128/mcb.7.11.3908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sachs L. Control of normal cell differentiation and the phenotypic reversion of malignancy in myeloid leukaemia. Nature. 1978 Aug 10;274(5671):535–539. doi: 10.1038/274535a0. [DOI] [PubMed] [Google Scholar]
  35. Singh B., Goldman R., Hutton L., Herzog N. K., Arlinghaus R. B. The P55 protein affected by v-mos expression is vimentin. J Virol. 1987 Nov;61(11):3625–3629. doi: 10.1128/jvi.61.11.3625-3629.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Steinert P. M., Jones J. C., Goldman R. D. Intermediate filaments. J Cell Biol. 1984 Jul;99(1 Pt 2):22s–27s. doi: 10.1083/jcb.99.1.22s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Steinert P. M., Roop D. R. Molecular and cellular biology of intermediate filaments. Annu Rev Biochem. 1988;57:593–625. doi: 10.1146/annurev.bi.57.070188.003113. [DOI] [PubMed] [Google Scholar]
  38. Takagi K., Ichikawa Y., Nagata K. Changes in K+,Na+-sensitive actin gelation factor during the differentiation of myeloid leukemia cells. J Biochem. 1985 Feb;97(2):605–616. doi: 10.1093/oxfordjournals.jbchem.a135096. [DOI] [PubMed] [Google Scholar]
  39. Tomida M., Yamamoto-Yamaguchi Y., Hozumi M. Purification of a factor inducing differentiation of mouse myeloid leukemic M1 cells from conditioned medium of mouse fibroblast L929 cells. J Biol Chem. 1984 Sep 10;259(17):10978–10982. [PubMed] [Google Scholar]
  40. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES