Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 May 1;110(5):1501–1511. doi: 10.1083/jcb.110.5.1501

Membrane biogenesis during B cell differentiation: most endoplasmic reticulum proteins are expressed coordinately

PMCID: PMC2200180  PMID: 2335560

Abstract

The induction of high-rate protein secretion entails increased biogenesis of secretory apparatus organelles. We examined the biogenesis of the secretory apparatus in the B cell line CH12 because it can be induced in vitro to secrete immunoglobulin (Ig). Upon stimulation with lipopolysaccharide (LPS), CH12 cells increased secretion of IgM 12-fold. This induced secretion was accompanied by preferential expansion of the ER and the Golgi complex. Three parameters of the rough ER changed: its area and volume increased 3.3- and 3.7-fold, respectively, and the density of membrane-bound ribosomes increased 3.5-fold. Similarly, the area of the Golgi stack increased 3.3-fold, and its volume increased 4.1-fold. These changes provide sufficient biosynthetic capacity to account for the increased secretory activity of CH12. Despite the large increase in IgM synthesis, and because of the expansion of the ER, the concentration of IgM within the ER changed less than twofold during the differentiation process. During the amplification of the rough ER, the expression of resident proteins changed according to one of two patterns. The majority (75%) of rough microsomal (RM) proteins increased in proportion to the increase in rough ER size. Included in this group were both lumenal proteins such as Ig binding protein (BiP), and membrane proteins such as ribophorins I and II. In addition, the expression of a minority (approximately 9%) of RM polypeptides increased preferentially, such that their abundance within the RM of secreting CH12 cells was increased. Thus, the expansion of ER during CH12 differentiation involves preferential increases in the abundance of a few resident proteins, superimposed upon proportional increases in most ER proteins.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amar-Costesec A., Todd J. A., Kreibich G. Segregation of the polypeptide translocation apparatus to regions of the endoplasmic reticulum containing ribophorins and ribosomes. I. Functional tests on rat liver microsomal subfractions. J Cell Biol. 1984 Dec;99(6):2247–2253. doi: 10.1083/jcb.99.6.2247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersson J., Lafleur L., Melchers IgM in bone marrow-derived lymphocytes. Synthesis, surface deposition, turnover and carbohydrate composition in unstimulated mouse B cells. Eur J Immunol. 1974 Mar;4(3):170–180. doi: 10.1002/eji.1830040305. [DOI] [PubMed] [Google Scholar]
  3. Argon Y., Milstein C. Intracellular processing of membrane and secreted immunoglobulin delta-chains. J Immunol. 1984 Sep;133(3):1627–1634. [PubMed] [Google Scholar]
  4. Arnold L. W., LoCascio N. J., Lutz P. M., Pennell C. A., Klapper D., Haughton G. Antigen-induced lymphomagenesis: identification of a murine B cell lymphoma with known antigen specificity. J Immunol. 1983 Oct;131(4):2064–2068. [PubMed] [Google Scholar]
  5. Belanger F. C., Brodl M. R., Ho T. H. Heat shock causes destabilization of specific mRNAs and destruction of endoplasmic reticulum in barley aleurone cells. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1354–1358. doi: 10.1073/pnas.83.5.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bergink E. W., Tseng M. T., Wittliff J. L. Sequential changes in the structure and function of hepatocytes in estrogen-treated Xenopus laevis males. Cytobiologie. 1977 Apr;14(3):362–377. [PubMed] [Google Scholar]
  7. Bole D. G., Hendershot L. M., Kearney J. F. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol. 1986 May;102(5):1558–1566. doi: 10.1083/jcb.102.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burkhardt J. K., Hester S., Argon Y. The glycoprotein of VSV accumulates in a distal Golgi compartment in the presence of CCCP. J Cell Sci. 1989 Apr;92(Pt 4):643–654. doi: 10.1242/jcs.92.4.643. [DOI] [PubMed] [Google Scholar]
  9. Carmichael D. F., Morin J. E., Dixon J. E. Purification and characterization of a thiol:protein disulfide oxidoreductase from bovine liver. J Biol Chem. 1977 Oct 25;252(20):7163–7167. [PubMed] [Google Scholar]
  10. Chang S. C., Wooden S. K., Nakaki T., Kim Y. K., Lin A. Y., Kung L., Attenello J. W., Lee A. S. Rat gene encoding the 78-kDa glucose-regulated protein GRP78: its regulatory sequences and the effect of protein glycosylation on its expression. Proc Natl Acad Sci U S A. 1987 Feb;84(3):680–684. doi: 10.1073/pnas.84.3.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Coleman R., Bell R. M. Triacylglycerol synthesis in isolated fat cells. Studies on the microsomal diacylglycerol acyltransferase activity using ethanol-dispersed diacylglycerols. J Biol Chem. 1976 Aug 10;251(15):4537–4543. [PubMed] [Google Scholar]
  12. Fawell S. E., Higgins S. J. Androgen regulation of specific mRNAs, endoplasmic reticulum and Golgi-system. Mol Cell Endocrinol. 1984 Aug;37(1):15–27. doi: 10.1016/0303-7207(84)90124-2. [DOI] [PubMed] [Google Scholar]
  13. Frommel T. O., Balber A. E. Trypanosoma brucei brucei, T. brucei gambiense, and T. brucei rhodesiense: common glycoproteins and glycoprotein oligosaccharide heterogeneity identified by lectin affinity blotting and endoglycosidase H treatment. Exp Parasitol. 1987 Feb;63(1):32–41. doi: 10.1016/0014-4894(87)90075-0. [DOI] [PubMed] [Google Scholar]
  14. Geetha-Habib M., Noiva R., Kaplan H. A., Lennarz W. J. Glycosylation site binding protein, a component of oligosaccharyl transferase, is highly similar to three other 57 kd luminal proteins of the ER. Cell. 1988 Sep 23;54(7):1053–1060. doi: 10.1016/0092-8674(88)90120-1. [DOI] [PubMed] [Google Scholar]
  15. Gilmore R., Blobel G. Transient involvement of signal recognition particle and its receptor in the microsomal membrane prior to protein translocation. Cell. 1983 Dec;35(3 Pt 2):677–685. doi: 10.1016/0092-8674(83)90100-9. [DOI] [PubMed] [Google Scholar]
  16. Griffiths G., Fuller S. D., Back R., Hollinshead M., Pfeiffer S., Simons K. The dynamic nature of the Golgi complex. J Cell Biol. 1989 Feb;108(2):277–297. doi: 10.1083/jcb.108.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haas I. G., Wabl M. Immunoglobulin heavy chain binding protein. Nature. 1983 Nov 24;306(5941):387–389. doi: 10.1038/306387a0. [DOI] [PubMed] [Google Scholar]
  18. Hendershot L., Bole D., Köhler G., Kearney J. F. Assembly and secretion of heavy chains that do not associate posttranslationally with immunoglobulin heavy chain-binding protein. J Cell Biol. 1987 Mar;104(3):761–767. doi: 10.1083/jcb.104.3.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Herbener G. H., Feldhoff R. C., Fonda M. L. A correlated morphometric and biochemical study of estrogen-induced vitellogenesis in male Rana pipiens. J Ultrastruct Res. 1983 Apr;83(1):28–42. doi: 10.1016/s0022-5320(83)90062-x. [DOI] [PubMed] [Google Scholar]
  20. Hortsch M., Avossa D., Meyer D. I. Characterization of secretory protein translocation: ribosome-membrane interaction in endoplasmic reticulum. J Cell Biol. 1986 Jul;103(1):241–253. doi: 10.1083/jcb.103.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kaetzel C. S., Rao C. K., Lamm M. E. Protein disulphide-isomerase from human placenta and rat liver. Purification and immunological characterization with monoclonal antibodies. Biochem J. 1987 Jan 1;241(1):39–47. doi: 10.1042/bj2410039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kearney J. F., Klein J., Bockman D. E., Cooper M. D., Lawton A. R. B cell differentiation induced by lipopolysaccharide. V. Suppression of plasma cell maturation by anti-mu: mode of action and characteristics of suppressed cells. J Immunol. 1978 Jan;120(1):158–166. [PubMed] [Google Scholar]
  23. King L. B., Corley R. B. Characterization of a presecretory phase in B-cell differentiation. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2814–2818. doi: 10.1073/pnas.86.8.2814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Koch G., Smith M., Macer D., Webster P., Mortara R. Endoplasmic reticulum contains a common, abundant calcium-binding glycoprotein, endoplasmin. J Cell Sci. 1986 Dec;86:217–232. doi: 10.1242/jcs.86.1.217. [DOI] [PubMed] [Google Scholar]
  25. Kozutsumi Y., Segal M., Normington K., Gething M. J., Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 1988 Mar 31;332(6163):462–464. doi: 10.1038/332462a0. [DOI] [PubMed] [Google Scholar]
  26. Kreibich G., Freienstein C. M., Pereyra B. N., Ulrich B. L., Sabatini D. D. Proteins of rough microsomal membranes related to ribosome binding. II. Cross-linking of bound ribosomes to specific membrane proteins exposed at the binding sites. J Cell Biol. 1978 May;77(2):488–506. doi: 10.1083/jcb.77.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kreibich G., Ulrich B. L., Sabatini D. D. Proteins of rough microsomal membranes related to ribosome binding. I. Identification of ribophorins I and II, membrane proteins characteristics of rough microsomes. J Cell Biol. 1978 May;77(2):464–487. doi: 10.1083/jcb.77.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lewis M. J., Mazzarella R. A., Green M. Structure and assembly of the endoplasmic reticulum. The synthesis of three major endoplasmic reticulum proteins during lipopolysaccharide-induced differentiation of murine lymphocytes. J Biol Chem. 1985 Mar 10;260(5):3050–3057. [PubMed] [Google Scholar]
  29. Lewis M. J., Mazzarella R. A., Green M. Structure and assembly of the endoplasmic reticulum: biosynthesis and intracellular sorting of ERp61, ERp59, and ERp49, three protein components of murine endoplasmic reticulum. Arch Biochem Biophys. 1986 Mar;245(2):389–403. doi: 10.1016/0003-9861(86)90230-4. [DOI] [PubMed] [Google Scholar]
  30. LoCascio N. J., Arnold L. W., Corley R. B., Haughton G. Induced differentiation of a B cell lymphoma with known antigen specificity. J Mol Cell Immunol. 1984;1(3):177–190. [PubMed] [Google Scholar]
  31. LoCascio N. J., Haughton G., Arnold L. W., Corley R. B. Role of cell surface immunoglobulin in B-lymphocyte activation. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2466–2469. doi: 10.1073/pnas.81.8.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Marcantonio E. E., Amar-Costesec A., Kreibich G. Segregation of the polypeptide translocation apparatus to regions of the endoplasmic reticulum containing ribophorins and ribosomes. II. Rat liver microsomal subfractions contain equimolar amounts of ribophorins and ribosomes. J Cell Biol. 1984 Dec;99(6):2254–2259. doi: 10.1083/jcb.99.6.2254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mazzarella R. A., Green M. ERp99, an abundant, conserved glycoprotein of the endoplasmic reticulum, is homologous to the 90-kDa heat shock protein (hsp90) and the 94-kDa glucose regulated protein (GRP94). J Biol Chem. 1987 Jun 25;262(18):8875–8883. [PubMed] [Google Scholar]
  34. Mechler B., Vassalli P. Membrane-bound ribosomes of myeloma cells. I. Preparation of free and membrane-bound ribosomal fractions. Assessment of the methods and properties of the ribosomes. J Cell Biol. 1975 Oct;67(1):1–15. doi: 10.1083/jcb.67.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Melchers F., Andersson J. IgM in bone marrow-derived lymphocytes. Changes in synthesis, turnover and secretion, and in numbers of molecules on the surface of B cells after mitogenic stimulation. Eur J Immunol. 1974 Mar;4(3):181–188. doi: 10.1002/eji.1830040306. [DOI] [PubMed] [Google Scholar]
  36. Mollenhauer H. H., Morré D. J. Structural compartmentation of the cytosol: zones of exclusion, zones of adhesion, cytoskeletal and intercisternal elements. Subcell Biochem. 1978;5:327–359. doi: 10.1007/978-1-4615-7942-7_7. [DOI] [PubMed] [Google Scholar]
  37. Monroe J. G., Havran W. L., Cambier J. C. Enrichment of viable lymphocytes in defined cycle phases by sorting on the basis of pulse width of axial light extinction. Cytometry. 1982 Jul;3(1):24–27. doi: 10.1002/cyto.990030107. [DOI] [PubMed] [Google Scholar]
  38. Normington K., Kohno K., Kozutsumi Y., Gething M. J., Sambrook J. S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell. 1989 Jun 30;57(7):1223–1236. doi: 10.1016/0092-8674(89)90059-7. [DOI] [PubMed] [Google Scholar]
  39. Ovnic M., Corley R. B. Quantitation of cell surface molecules on a differentiating, Ly-1+ B cell lymphoma. J Immunol. 1987 May 1;138(9):3075–3082. [PubMed] [Google Scholar]
  40. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  41. Quinn P., Griffiths G., Warren G. Density of newly synthesized plasma membrane proteins in intracellular membranes II. Biochemical studies. J Cell Biol. 1984 Jun;98(6):2142–2147. doi: 10.1083/jcb.98.6.2142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Resendez E., Jr, Ting J., Kim K. S., Wooden S. K., Lee A. S. Calcium ionophore A23187 as a regulator of gene expression in mammalian cells. J Cell Biol. 1986 Dec;103(6 Pt 1):2145–2152. doi: 10.1083/jcb.103.6.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rome L. H., Garvin A. J., Allietta M. M., Neufeld E. F. Two species of lysosomal organelles in cultured human fibroblasts. Cell. 1979 May;17(1):143–153. doi: 10.1016/0092-8674(79)90302-7. [DOI] [PubMed] [Google Scholar]
  44. Rose M. D., Misra L. M., Vogel J. P. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell. 1989 Jun 30;57(7):1211–1221. doi: 10.1016/0092-8674(89)90058-5. [DOI] [PubMed] [Google Scholar]
  45. Roth R. A., Koshland M. E. Role of disulfide interchange enzyme in immunoglobulin synthesis. Biochemistry. 1981 Nov 10;20(23):6594–6599. doi: 10.1021/bi00526a012. [DOI] [PubMed] [Google Scholar]
  46. Shohat M., Janossy G., Dourmashkin R. R. Development of rough endoplasmic reticulum in mouse splenic lymphocytes stimulated by mitogens. Eur J Immunol. 1973 Nov;3(11):680–687. doi: 10.1002/eji.1830031106. [DOI] [PubMed] [Google Scholar]
  47. Simar L. J. Analyse stéréologique de la différenciation des cellules immunitaires ganglionnaires au cours des réactions du type humoral. Pathol Biol (Paris) 1975 Jun;23(6):444–447. [PubMed] [Google Scholar]
  48. Stockdale A. M., Dul J. L., Wiest D. L., Digel M., Argon Y. The expression of membrane and secreted immunoglobulin during the in vitro differentiation of the murine B cell lymphoma CH12. J Immunol. 1987 Nov 15;139(10):3527–3535. [PubMed] [Google Scholar]
  49. Wiest D. L., Burkhardt J. K., Stockdale A. M., Argon Y. Expression of intracisternal A-type particles is increased when a B-cell lymphoma differentiates into an immunoglobulin-secreting cell. J Virol. 1989 Feb;63(2):659–668. doi: 10.1128/jvi.63.2.659-668.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. de Vries E., van der Weij J. P., van der Veen C. J., Cats A. Characterization and classification of lymphoid cells after pokeweed mitogen stimulation. Virchows Arch B Cell Pathol Incl Mol Pathol. 1983;43(1):17–30. doi: 10.1007/BF02932939. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES