Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 May 1;110(5):1779–1789. doi: 10.1083/jcb.110.5.1779

Developmental regulation of mammary-derived growth inhibitor expression in bovine mammary tissue

PMCID: PMC2200195  PMID: 2335570

Abstract

The cDNA for a previously described growth inhibitor, designated as mammary-derived growth inhibitor (MDGI) (Grosse, R., and P. Langen. 1989. In Handbook of Experimental Pharmacology. In press) has been cloned from a plasmid library which was derived from terminally differentiated bovine mammary gland. Sequencing of the cDNA showed an open reading frame coding for a protein of 133 amino acids. In six positions differences were found between the sequence determined from the cDNA and that determined previously by amino acid sequence analysis. Northern blot analysis revealed abundant MDGI mRNA in the terminally differentiated mammary gland, whereas in virgin gland, liver or pancreas transcripts were not expressed. By use of in situ hybridization technique transcription of MDGI in the developing bovine mammary gland was analyzed. Increasing amounts of MDGI mRNA were detected in the epithelial cells of embryonic mammary rudiment, in the epithelium of developing lobules and in terminal parts of ducts and lobuloalveolar epithelial cells of differentiated glands. There was a geographical gradient of MDGI mRNA concentration in bovine mammary gland reaching a maximum in the proximal parts of the tissue. An immunohistochemical analysis with different polyclonal and peptide directed antibodies against MDGI confirmed the in situ hybridization data with respect to the tissue-specific and differentiation-dependent MDGI expression in bovine mammary gland. The results suggest a close relationship between MDGI transcription and developmental processes in the normal bovine mammary gland.

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpers D. H., Strauss A. W., Ockner R. K., Bass N. M., Gordon J. I. Cloning of a cDNA encoding rat intestinal fatty acid binding protein. Proc Natl Acad Sci U S A. 1984 Jan;81(2):313–317. doi: 10.1073/pnas.81.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ball R. K., Friis R. R., Schoenenberger C. A., Doppler W., Groner B. Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J. 1988 Jul;7(7):2089–2095. doi: 10.1002/j.1460-2075.1988.tb03048.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bass N. M., Manning J. A. Tissue expression of three structurally different fatty acid binding proteins from rat heart muscle, liver, and intestine. Biochem Biophys Res Commun. 1986 Jun 30;137(3):929–935. doi: 10.1016/0006-291x(86)90314-1. [DOI] [PubMed] [Google Scholar]
  4. Bernatowicz M. S., Matsueda G. R. Preparation of peptide-protein immunogens using N-succinimidyl bromoacetate as a heterobifunctional crosslinking reagent. Anal Biochem. 1986 May 15;155(1):95–102. doi: 10.1016/0003-2697(86)90231-9. [DOI] [PubMed] [Google Scholar]
  5. Bernlohr D. A., Angus C. W., Lane M. D., Bolanowski M. A., Kelly T. J., Jr Expression of specific mRNAs during adipose differentiation: identification of an mRNA encoding a homologue of myelin P2 protein. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5468–5472. doi: 10.1073/pnas.81.17.5468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Billich S., Wissel T., Kratzin H., Hahn U., Hagenhoff B., Lezius A. G., Spener F. Cloning of a full-length complementary DNA for fatty-acid-binding protein from bovine heart. Eur J Biochem. 1988 Aug 15;175(3):549–556. doi: 10.1111/j.1432-1033.1988.tb14227.x. [DOI] [PubMed] [Google Scholar]
  7. Bos J. L., Verlaan-de Vries M., Jansen A. M., Veeneman G. H., van Boom J. H., van der Eb A. J. Three different mutations in codon 61 of the human N-ras gene detected by synthetic oligonucleotide hybridization. Nucleic Acids Res. 1984 Dec 11;12(23):9155–9163. doi: 10.1093/nar/12.23.9155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brandt R., Pepperle M., Otto A., Kraft R., Boehmer F. D., Grosse R. A 13-kilodalton protein purified from milk fat globule membranes is closely related to a mammary-derived growth inhibitor. Biochemistry. 1988 Mar 8;27(5):1420–1425. doi: 10.1021/bi00405a005. [DOI] [PubMed] [Google Scholar]
  9. Böhmer F. D., Kraft R., Otto A., Wernstedt C., Hellman U., Kurtz A., Müller T., Rohde K., Etzold G., Lehmann W. Identification of a polypeptide growth inhibitor from bovine mammary gland. Sequence homology to fatty acid- and retinoid-binding proteins. J Biol Chem. 1987 Nov 5;262(31):15137–15143. [PubMed] [Google Scholar]
  10. Böhmer F. D., Lehmann W., Noll F., Samtleben R., Langen P., Grosse R. Specific neutralizing antiserum against a polypeptide growth inhibitor for mammary cells purified from bovine mammary gland. Biochim Biophys Acta. 1985 Jul 30;846(1):145–154. doi: 10.1016/0167-4889(85)90120-x. [DOI] [PubMed] [Google Scholar]
  11. Böhmer F. D., Sun Q., Pepperle M., Müller T., Eriksson U., Wang J. L., Grosse R. Antibodies against mammary derived growth inhibitor (MDGI) react with a fibroblast growth inhibitor and with heart fatty acid binding protein. Biochem Biophys Res Commun. 1987 Nov 13;148(3):1425–1431. doi: 10.1016/s0006-291x(87)80291-7. [DOI] [PubMed] [Google Scholar]
  12. Chen E. Y., Seeburg P. H. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA. 1985 Apr;4(2):165–170. doi: 10.1089/dna.1985.4.165. [DOI] [PubMed] [Google Scholar]
  13. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  14. Claffey K. P., Herrera V. L., Brecher P., Ruiz-Opazo N. Cloning and tissue distribution of rat heart fatty acid binding protein mRNA: identical forms in heart and skeletal muscle. Biochemistry. 1987 Dec 1;26(24):7900–7904. doi: 10.1021/bi00398a054. [DOI] [PubMed] [Google Scholar]
  15. Crisman T. S., Claffey K. P., Saouaf R., Hanspal J., Brecher P. Measurement of rat heart fatty acid binding protein by ELISA. Tissue distribution, developmental changes and subcellular distribution. J Mol Cell Cardiol. 1987 May;19(5):423–431. doi: 10.1016/s0022-2828(87)80394-2. [DOI] [PubMed] [Google Scholar]
  16. Dulbecco R., Henahan M., Armstrong B. Cell types and morphogenesis in the mammary gland. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7346–7350. doi: 10.1073/pnas.79.23.7346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Eriksson U., Hansson E., Nilsson M., Jönsson K. H., Sundelin J., Peterson P. A. Increased levels of several retinoid binding proteins resulting from retinoic acid-induced differentiation of F9 cells. Cancer Res. 1986 Feb;46(2):717–722. [PubMed] [Google Scholar]
  18. Ervin P. R., Jr, Kaminski M. S., Cody R. L., Wicha M. S. Production of mammastatin, a tissue-specific growth inhibitor, by normal human mammary cells. Science. 1989 Jun 30;244(4912):1585–1587. doi: 10.1126/science.2662405. [DOI] [PubMed] [Google Scholar]
  19. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  20. Forsyth I. A. Growth factors in mammary gland function. J Reprod Fertil. 1989 Mar;85(2):759–770. doi: 10.1530/jrf.0.0850759. [DOI] [PubMed] [Google Scholar]
  21. Gordon J. I. Intestinal epithelial differentiation: new insights from chimeric and transgenic mice. J Cell Biol. 1989 Apr;108(4):1187–1194. doi: 10.1083/jcb.108.4.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  23. Hamamoto S., Imagawa W., Yang J., Nandi S. Morphogenesis of mouse mammary epithelial cells growing within collagen gels: ultrastructural and immunocytochemical characterization. Cell Differ. 1988 Feb;22(3):191–201. doi: 10.1016/0045-6039(88)90011-5. [DOI] [PubMed] [Google Scholar]
  24. Haunerland N., Jagschies G., Schulenberg H., Spener F. Fatty-acid-binding proteins. Occurrence of two fatty-acid-binding proteins in bovine liver cytosol and their binding of fatty acids, cholesterol, and other lipophilic ligands. Hoppe Seylers Z Physiol Chem. 1984 Mar;365(3):365–376. doi: 10.1515/bchm2.1984.365.1.365. [DOI] [PubMed] [Google Scholar]
  25. Heuckeroth R. O., Birkenmeier E. H., Levin M. S., Gordon J. I. Analysis of the tissue-specific expression, developmental regulation, and linkage relationships of a rodent gene encoding heart fatty acid binding protein. J Biol Chem. 1987 Jul 15;262(20):9709–9717. [PubMed] [Google Scholar]
  26. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  27. Ichinose R. R., Nandi S. Influence of hormones on lobulo-alveolar differentiation of mouse mammary glands in vitro. J Endocrinol. 1966 Aug;35(4):331–340. doi: 10.1677/joe.0.0350331. [DOI] [PubMed] [Google Scholar]
  28. Imagawa W., Tomooka Y., Hamamoto S., Nandi S. Stimulation of mammary epithelial cell growth in vitro: interaction of epidermal growth factor and mammogenic hormones. Endocrinology. 1985 Apr;116(4):1514–1524. doi: 10.1210/endo-116-4-1514. [DOI] [PubMed] [Google Scholar]
  29. Imagawa W., Tomooka Y., Nandi S. Serum-free growth of normal and tumor mouse mammary epithelial cells in primary culture. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4074–4077. doi: 10.1073/pnas.79.13.4074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jones P. D., Carne A., Bass N. M., Grigor M. R. Isolation and characterization of fatty acid binding proteins from mammary tissue of lactating rats. Biochem J. 1988 May 1;251(3):919–925. doi: 10.1042/bj2510919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kimura H., Hitomi M., Odani S., Koide T., Arakawa M., Ono T. Rat heart fatty acid-binding protein. Evidence that supports the amino acid sequence predicted from the cDNA. Biochem J. 1989 May 15;260(1):303–306. doi: 10.1042/bj2600303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  34. Li E., Demmer L. A., Sweetser D. A., Ong D. E., Gordon J. I. Rat cellular retinol-binding protein II: use of a cloned cDNA to define its primary structure, tissue-specific expression, and developmental regulation. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5779–5783. doi: 10.1073/pnas.83.16.5779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Matarese V., Bernlohr D. A. Purification of murine adipocyte lipid-binding protein. Characterization as a fatty acid- and retinoic acid-binding protein. J Biol Chem. 1988 Oct 5;263(28):14544–14551. [PubMed] [Google Scholar]
  36. McGrath C. M., Soule H. D. Renewal inhibition of human mammary cell growth in vitro: cortisol and the recruitment of cells to terminal differentiation. J Cell Physiol. 1983 Sep;116(3):385–396. doi: 10.1002/jcp.1041160317. [DOI] [PubMed] [Google Scholar]
  37. Melchior W. B., Jr, Von Hippel P. H. Alteration of the relative stability of dA-dT and dG-dC base pairs in DNA. Proc Natl Acad Sci U S A. 1973 Feb;70(2):298–302. doi: 10.1073/pnas.70.2.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Moench T. R., Gendelman H. E., Clements J. E., Narayan O., Griffin D. E. Efficiency of in situ hybridization as a function of probe size and fixation technique. J Virol Methods. 1985 Jun;11(2):119–130. doi: 10.1016/0166-0934(85)90035-7. [DOI] [PubMed] [Google Scholar]
  39. Müller T., Kurtz A., Vogel F., Breter H., Schneider F., Angström U., Mieth M., Böhmer F. D., Grosse R. A mammary-derived growth inhibitor (MDGI) related 70 kDa antigen identified in nuclei of mammary epithelial cells. J Cell Physiol. 1989 Feb;138(2):415–423. doi: 10.1002/jcp.1041380225. [DOI] [PubMed] [Google Scholar]
  40. Norrander J., Kempe T., Messing J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene. 1983 Dec;26(1):101–106. doi: 10.1016/0378-1119(83)90040-9. [DOI] [PubMed] [Google Scholar]
  41. Offner G. D., Brecher P., Sawlivich W. B., Costello C. E., Troxler R. F. Characterization and amino acid sequence of a fatty acid-binding protein from human heart. Biochem J. 1988 May 15;252(1):191–198. doi: 10.1042/bj2520191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ono M., Oka T. The differential actions of cortisol on the accumulation of alpha-lactalbumin and casein in midpregnant mouse mammary gland in culture. Cell. 1980 Feb;19(2):473–480. doi: 10.1016/0092-8674(80)90522-x. [DOI] [PubMed] [Google Scholar]
  43. Rubin D. C., Ong D. E., Gordon J. I. Cellular differentiation in the emerging fetal rat small intestinal epithelium: mosaic patterns of gene expression. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1278–1282. doi: 10.1073/pnas.86.4.1278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sacchettini J. C., Said B., Schulz H., Gordon J. I. Rat heart fatty acid-binding protein is highly homologous to the murine adipocyte 422 protein and the P2 protein of peripheral nerve myelin. J Biol Chem. 1986 Jun 25;261(18):8218–8223. [PubMed] [Google Scholar]
  45. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  46. Salomon D. S., Liotta L. A., Kidwell W. R. Differential response to growth factor by rat mammary epithelium plated on different collagen substrata in serum-free medium. Proc Natl Acad Sci U S A. 1981 Jan;78(1):382–386. doi: 10.1073/pnas.78.1.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schoentgen F., Pignède G., Bonanno L. M., Jollès P. Fatty-acid-binding protein from bovine brain. Amino acid sequence and some properties. Eur J Biochem. 1989 Oct 20;185(1):35–40. [PubMed] [Google Scholar]
  49. Sheridan M., Wilkinson T. C., Wilton D. C. Studies on fatty acid-binding proteins. Changes in the concentration of hepatic fatty acid-binding protein during development in the rat. Biochem J. 1987 Mar 15;242(3):919–922. doi: 10.1042/bj2420919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Silberstein G. B., Daniel C. W. Reversible inhibition of mammary gland growth by transforming growth factor-beta. Science. 1987 Jul 17;237(4812):291–293. doi: 10.1126/science.3474783. [DOI] [PubMed] [Google Scholar]
  51. Sweetser D. A., Hauft S. M., Hoppe P. C., Birkenmeier E. H., Gordon J. I. Transgenic mice containing intestinal fatty acid-binding protein-human growth hormone fusion genes exhibit correct regional and cell-specific expression of the reporter gene in their small intestine. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9611–9615. doi: 10.1073/pnas.85.24.9611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Taketani Y., Oka T. Epidermal growth factor stimulates cell proliferation and inhibits functional differentiation of mouse mammary epithelial cells in culture. Endocrinology. 1983 Sep;113(3):871–877. doi: 10.1210/endo-113-3-871. [DOI] [PubMed] [Google Scholar]
  53. Tonelli Q. J., Sorof S. Epidermal growth factor requirement for development of cultured mammary gland. Nature. 1980 May 22;285(5762):250–252. doi: 10.1038/285250a0. [DOI] [PubMed] [Google Scholar]
  54. Topper Y. J., Freeman C. S. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev. 1980 Oct;60(4):1049–1106. doi: 10.1152/physrev.1980.60.4.1049. [DOI] [PubMed] [Google Scholar]
  55. Travers M. T., Barrett-Lee P. J., Berger U., Luqmani Y. A., Gazet J. C., Powles T. J., Coombes R. C. Growth factor expression in normal, benign, and malignant breast tissue. Br Med J (Clin Res Ed) 1988 Jun 11;296(6637):1621–1624. doi: 10.1136/bmj.296.6637.1621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Turkington R. W. The role of epithelial growth factor in mammary gland development in vitro. Exp Cell Res. 1969 Sep;57(1):79–85. doi: 10.1016/0014-4827(69)90369-3. [DOI] [PubMed] [Google Scholar]
  57. Whetstone H. D., Hurley W. L., Davis C. L. Identification and characterization of a fatty acid binding protein in bovine mammary gland. Comp Biochem Physiol B. 1986;85(3):687–692. doi: 10.1016/0305-0491(86)90068-4. [DOI] [PubMed] [Google Scholar]
  58. Wood B. G., Washburn L. L., Mukherjee A. S., Banerjee M. R. Hormonal regulation of lobulo-alveolar growth, functional differentiation and regression of whole mouse mammary gland in organ culture. J Endocrinol. 1975 Apr;65(1):1–6. doi: 10.1677/joe.0.0650001. [DOI] [PubMed] [Google Scholar]
  59. du Bois M., Elias J. J. Subpopulations of cells in immature mouse mammary gland as detected by proliferative responses to hormones in organ culture. Dev Biol. 1984 Nov;106(1):70–75. doi: 10.1016/0012-1606(84)90062-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES