Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1972 Sep 1;54(3):468–492. doi: 10.1083/jcb.54.3.468

MITORIBOSOMES FROM CANDIDA UTILIS

Morphological, Physical, and Chemical Characterization of the Monomer Form and of Its Subunits

Pierre V Vignais 1, Barbara J Stevens 1, Janine Huet 1, Jean André 1
PMCID: PMC2200280  PMID: 5044756

Abstract

Highly purified mitochondrial ribosomes (mitoribosomes) have been obtained from the yeast Candida utilis. Sedimentation analysis in sucrose gradients made in 5 mM MgCl2, 1 mM Tris, pH 7.4 and 50 mM KCl clearly distinguishes mitoribosomes (72S) from cytoplasmic ribosomes (cytoribosomes) (78S). Mitoribosomes are completely dissociated into 50S and 36S subunits at 10-4 M MgCl2 whereas complete dissociation of cytoribosomes into 61S and 37S subunits occurs only at 10-6 M MgCl2 Electron microscopy of negatively stained mitoribosomes (72S peak) shows bipartite profiles, about 265 x 210 x 200 A Characteristic views are interpreted as frontal, dorsal, and lateral projections of the particles, the latter is observed in two enantiomorphic forms Mitoribosome 50S subunits display rounded profiles bearing a conspicuous knoblike projection, reminiscent of the large bacterial subunit. The 36S subunits show a variety of angular profiles. Mitoribosomal subunits are subject to artifactual dimerization at high Mg2+ concentration Under these conditions, a supplementary 80S peak arises. Electron microscopic observation of the 80S peak reveals closely paired particles of the 50S type Buoyant density determinations after glutaraldehyde fixation show a single peak at ρ = 1.48 for mitoribosomes and 1.53 for cytoribosomes In the presence of ethylenediaminetetraacetate (EDTA), two species of RNA, 21S and 16S, are obtained from mitoribosomes, while 25S and 17S RNA are obtained from cytoribosomes It is established that the small and large RNA species are derived from the 36S and 50S subunits, respectively, by extraction of the RNA from each subunit The G + C content of the RNA is lower for mitoribosomes (33%) than for cytoribosomes (50%). Incubation of C utilis mitochondria with leucine-14C results in the labeling of 72S mitoribosomes. The leucine-14C incorporation is inhibited by chloramphenicol and resistant to cycloheximide Puromycin strips the incorporated radioactivity from the 72S mitoribosomes, which is consistent with the view that leucine-14C is incorporated into nascent polypeptide chains at the level of mitoribosomes

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashwell M. A., Work T. S. The functional characterization of ribosomes from rat liver mitochondria. Biochem Biophys Res Commun. 1970 Apr 24;39(2):204–211. doi: 10.1016/0006-291x(70)90779-5. [DOI] [PubMed] [Google Scholar]
  2. Ashwell M., Work T. S. The biogenesis of mitochondria. Annu Rev Biochem. 1970;39:251–290. doi: 10.1146/annurev.bi.39.070170.001343. [DOI] [PubMed] [Google Scholar]
  3. Attardi G., Ojala D. Mitochondrial ribssome in HeLa cells. Nat New Biol. 1971 Feb 3;229(5):133–136. doi: 10.1038/newbio229133a0. [DOI] [PubMed] [Google Scholar]
  4. Baltimore D., Huang A. S. Isopycnic separation of subcellular components from poliovirus-infected and normal HeLa cells. Science. 1968 Nov 1;162(3853):572–574. doi: 10.1126/science.162.3853.572. [DOI] [PubMed] [Google Scholar]
  5. Bartoov B., Mitra R. S., Freeman K. B. Ribosomal-type ribonucleic acid from rodent mitochondria. Biochem J. 1970 Dec;120(3):455–466. doi: 10.1042/bj1200455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beattie D. S., Basford R. E., Koritz S. B. The inner membrane as the site of the in vitro incorporation of L-[14C]leucine into mitochondrial protein. Biochemistry. 1967 Oct;6(10):3099–3106. doi: 10.1021/bi00862a017. [DOI] [PubMed] [Google Scholar]
  7. Brunk C. F., Leick V. Rapid equilibrium isopycnic CsC1 gradients. Biochim Biophys Acta. 1969 Mar 18;179(1):136–144. doi: 10.1016/0005-2787(69)90129-4. [DOI] [PubMed] [Google Scholar]
  8. Bruskov V. I., Kiselev N. A. Electron microscope study of the structure of Escherichia coli riboomes and CM-like particles. J Mol Biol. 1968 Nov 14;37(3):367–377. doi: 10.1016/0022-2836(68)90108-3. [DOI] [PubMed] [Google Scholar]
  9. Bruskov V. I., Odintsova M. S. Comparative electron microscopic studies of chloroplast and cytoplasmic ribosomes. J Mol Biol. 1968 Mar 14;32(2):471–473. doi: 10.1016/0022-2836(68)90024-7. [DOI] [PubMed] [Google Scholar]
  10. Clegg J. C., Arnstein H. R. The controlled dissociation of proteins from rat liver ribosomes by potassium chloride. Eur J Biochem. 1970 Mar 1;13(1):149–157. doi: 10.1111/j.1432-1033.1970.tb00911.x. [DOI] [PubMed] [Google Scholar]
  11. Dubin D. T., Montenecourt B. S. Mitochondrial RNA from cultured animal cells. Distinctive high-molecular-weight and 4 s species. J Mol Biol. 1970 Mar 14;48(2):279–295. doi: 10.1016/0022-2836(70)90161-0. [DOI] [PubMed] [Google Scholar]
  12. Edelman M., Verma I. M., Herzog R., Galun E., Littauer U. Z. Physico-chemical properties of mitochondrial ribosomal RNA from fungi. Eur J Biochem. 1971 Apr;19(3):372–378. doi: 10.1111/j.1432-1033.1971.tb01326.x. [DOI] [PubMed] [Google Scholar]
  13. Edelman M., Verma I. M., Littauer U. Z. Mitochondrial ribosomal RNA from Aspergillus nidulans: characterization of a novel molecular species. J Mol Biol. 1970 Apr 14;49(1):67–83. doi: 10.1016/0022-2836(70)90376-1. [DOI] [PubMed] [Google Scholar]
  14. Eladari M. E., Galibert F., Boiron M. Mise en évidence et analyse des ribosomes et des RNA associés aux mitochondries de cellules de mammifères. Eur J Biochem. 1971 Sep 24;22(2):193–202. doi: 10.1111/j.1432-1033.1971.tb01532.x. [DOI] [PubMed] [Google Scholar]
  15. Fauman M., Rabiwitz M., Getz G. S. Base composition and sedimentation properties of mitochondrial RNA of Saccharomyces cerebisiae. Biochim Biophys Acta. 1969 Jun 17;182(2):355–360. doi: 10.1016/0005-2787(69)90186-5. [DOI] [PubMed] [Google Scholar]
  16. Gavrilova L. P., Ivanov D. A., Spirin A. S. Studies on the structure of ribosomes. 3. Stepwise unfolding of the 50 s particles without loss of ribosomal protein. J Mol Biol. 1966 Apr;16(2):473–489. doi: 10.1016/s0022-2836(66)80186-9. [DOI] [PubMed] [Google Scholar]
  17. Gesteland R. F. Unfolding of Escherichia coli ribosomes by removal of magnesium. J Mol Biol. 1966 Jul;18(2):356–371. doi: 10.1016/s0022-2836(66)80253-x. [DOI] [PubMed] [Google Scholar]
  18. Ghysen A., Bollen A., Herzog A. Ionic effects on the ribosomal quaternary structure. Eur J Biochem. 1970 Mar 1;13(1):132–136. doi: 10.1111/j.1432-1033.1970.tb00908.x. [DOI] [PubMed] [Google Scholar]
  19. Houssais J. F. Mise en évidence dans les mitochondries des cellules de mammifères de particules ribosomales se différenciant des ribosomes cytoplasmiques par leur taille et leurs acides nucléiques. Eur J Biochem. 1971 Feb 1;18(3):401–406. doi: 10.1111/j.1432-1033.1971.tb01256.x. [DOI] [PubMed] [Google Scholar]
  20. Itoh T., Otaka E., Osawa S. Release of ribosomal proteins from Escherichia coli ribosomes with high concentrations of lithium chloride. J Mol Biol. 1968 Apr 14;33(1):109–122. doi: 10.1016/0022-2836(68)90284-2. [DOI] [PubMed] [Google Scholar]
  21. Kroon A. M., Jansen R. J. The effect of low concentrations of chlorampheicol on beating rat-heart cells in tissue culture. Biochim Biophys Acta. 1968 Feb 26;155(2):629–632. doi: 10.1016/0005-2787(68)90212-8. [DOI] [PubMed] [Google Scholar]
  22. Küntzel H. Mitochondrial and cytoplasmic ribosomes from Neurospora crassa: characterization of their subunits. J Mol Biol. 1969 Mar 14;40(2):315–320. doi: 10.1016/0022-2836(69)90481-1. [DOI] [PubMed] [Google Scholar]
  23. Küntzel H., Noll H. Mitochondrial and cytoplasmic polysomes from Neurospora crassa. Nature. 1967 Sep 23;215(5108):1340–1345. doi: 10.1038/2151340a0. [DOI] [PubMed] [Google Scholar]
  24. Lamb A. J., Clark-Walker G. D., Linnane A. W. The biogenesis of mitochondria. 4. The differentiation of mitochondrial and cytoplasmic protein synthesizing systems in vitro by antibiotics. Biochim Biophys Acta. 1968 Jul 23;161(2):415–427. [PubMed] [Google Scholar]
  25. Lerman M. I., Spirin A. S., Gavrilova L. P., Golov V. F. Studies on the structure of ribosomes. II. Stepwise dissociation of protein from ribosomes by caesium chloride and the re-assembly of ribosome-like particles. J Mol Biol. 1966 Jan;15(1):268–281. doi: 10.1016/s0022-2836(66)80226-7. [DOI] [PubMed] [Google Scholar]
  26. Loeb J. N., Hubby B. G. Amino acid incorporation by isolated mitochondria in the presence of cycloheximide. Biochim Biophys Acta. 1968 Oct 29;166(3):745–748. doi: 10.1016/0005-2787(68)90392-4. [DOI] [PubMed] [Google Scholar]
  27. Mattoon J. R., Sherman F. Reconstitution of phosphorylating electron transport in mitochondria from a cytochrome c-deficient yeast mutant. J Biol Chem. 1966 Oct 10;241(19):4330–4338. [PubMed] [Google Scholar]
  28. Miller A., Karlsson U., Boardman N. K. Electron microscopy of ribosomes isolated from tobacco leaves. J Mol Biol. 1966 Jun;17(2):487–489. doi: 10.1016/s0022-2836(66)80158-4. [DOI] [PubMed] [Google Scholar]
  29. Montenecourt B. S., Langsam M. E., Dubin D. T. Mitochondrial RNA from cultured animal cells. II. A comparison of the high molecular weight RNA from mouse and hamster cells. J Cell Biol. 1970 Aug;46(2):245–251. doi: 10.1083/jcb.46.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Morimoto H., Halvorson H. O. Characterization of mitochondrial ribosomes from yeast. Proc Natl Acad Sci U S A. 1971 Feb;68(2):324–328. doi: 10.1073/pnas.68.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nonomura Y., Blobel G., Sabatini D. Structure of liver ribosomes studied by negative staining. J Mol Biol. 1971 Sep 14;60(2):303–323. doi: 10.1016/0022-2836(71)90296-8. [DOI] [PubMed] [Google Scholar]
  32. Perlman S., Penman S. Protein-synthesizing structures associated with mitochondria. Nature. 1970 Jul 11;227(5254):133–137. doi: 10.1038/227133a0. [DOI] [PubMed] [Google Scholar]
  33. Rabbitts T. H., Work T. S. The mitochondrial ribosome and ribosomal RNA of the chick. FEBS Lett. 1971 May 10;14(4):214–218. doi: 10.1016/0014-5793(71)80620-8. [DOI] [PubMed] [Google Scholar]
  34. Rabinowitz M., Swift H. Mitochondrial nucleic acids and their relation to the biogenesis of mitochondria. Physiol Rev. 1970 Jul;50(3):376–427. doi: 10.1152/physrev.1970.50.3.376. [DOI] [PubMed] [Google Scholar]
  35. Rawson J. R., Stutz E. Isolation and characterization of Euglena gracilis cytoplasmic and chloroplast ribosomes and their ribosomal RNA components. Biochim Biophys Acta. 1969 Oct 22;190(2):368–380. doi: 10.1016/0005-2787(69)90087-2. [DOI] [PubMed] [Google Scholar]
  36. Rifkin M. R., Wood D. D., Luck D. J. Ribosomal RNA and ribosomes from mitochondria of Neurospora crassa. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1025–1032. doi: 10.1073/pnas.58.3.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schmitt H. Characterization of mitochondrial ribosomes from Saccharomyces cerevisiae. FEBS Lett. 1969 Aug;4(3):234–238. doi: 10.1016/0014-5793(69)80243-7. [DOI] [PubMed] [Google Scholar]
  38. Schmitt H. Core particles and proteins from mitochondrial ribosomes of yeast. FEBS Lett. 1971 Jun 24;15(3):186–190. doi: 10.1016/0014-5793(71)80308-3. [DOI] [PubMed] [Google Scholar]
  39. Solymosy F., Fedorcsák I., Gulyás A., Farkas G. L., Ehrenberg L. A new method based on the use of diethyl pyrocarbonate as a nuclease inhibitor for the extraction of undegraded nucleic acid from plant tissues. Eur J Biochem. 1968 Sep 24;5(4):520–527. doi: 10.1111/j.1432-1033.1968.tb00401.x. [DOI] [PubMed] [Google Scholar]
  40. Stanley W. M., Jr, Bock R. M. Isolation and physical properties of the ribosomal ribonucleic acid of Escherichia coli. Biochemistry. 1965 Jul;4(7):1302–1311. doi: 10.1021/bi00883a014. [DOI] [PubMed] [Google Scholar]
  41. Swanson R. F., Dawid I. B. The mitochondrial ribosome of Xenopus laevis. Proc Natl Acad Sci U S A. 1970 May;66(1):117–124. doi: 10.1073/pnas.66.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. TASHIRO Y., SIEKEVITZ P. ULTRACENTRIFUGAL STUDIES ON THE DISSOCIATION OF HEPATIC RIBOSOMES. J Mol Biol. 1965 Feb;11:149–165. doi: 10.1016/s0022-2836(65)80047-x. [DOI] [PubMed] [Google Scholar]
  43. Vesco C., Penman S. The cytoplasmic RNA of HeLa cells: new discrete species associated with mitochondria. Proc Natl Acad Sci U S A. 1969 Jan;62(1):218–225. doi: 10.1073/pnas.62.1.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wilson S. H., Quincey R. V. Quantitative determination of low molecular weight ribonucleic acids in rat liver microsomes. J Biol Chem. 1969 Mar 10;244(5):1092–1096. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES