Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1996 Mar;103(3):408–413. doi: 10.1111/j.1365-2249.1996.tb08295.x

Natural killer (NK) cell deficiency associated with an epitope-deficient Fc receptor type IIIA (CD16-II)

S JAWAHAR *, C MOODY *, M CHAN *, R FINBERG *, R GEHA *, T CHATILA *
PMCID: PMC2200361  PMID: 8608639

Abstract

Susceptibility to herpes virus infections has been described in experimental animals depleted of NK cells and in patients with defective NK cell function. We have identified a child with recurrent infections, especially with herpes simplex virus, who had a decreased number of CD56+CD3 NK cells in circulation. Her NK cells expressed an altered form of the Fc receptor for IgG type IIIA (FcγRIIIA or CD16-II) which was not reactive with the anti-CD16-II MoAb B73.1. Sequence analysis revealed the patient to be homozygous for a T to A substitution at position 230 of CD16-II cDNA, predicting a Leu66 to His66 change in the first immunoglobulin domain of CD16-II at the B73.1 recognition site. Spontaneous NK cell activity of the patient's peripheral blood mononuclear cells (PBMC) was markedly decreased, while antibody-dependent cellular cytotoxicity (ADCC) was unaffected. These results suggest that this child suffers from a defect affecting the development and function of NK cells, resulting in NK cytopenia and clinically significant immunodeficiency. The role of the CD16-II mutant in the pathogenesis of the patient's NK cell deficiency is discussed.

Keywords: immunodeficiency, natural killer cells, Fc receptors, CD16, herpes viruses

Full Text

The Full Text of this article is available as a PDF (779.1 KB).

References

  • 1.Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–37. doi: 10.1016/S0065-2776(08)60664-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Lopez C, Kirkpatrick D, Fitzgerald P. In: The role of NK (HSV-1) effector cells in the resistance to herpes virus infections in man, in NK cells and other effector cells. Herberman RB, editor. New York: Academic Press; 1982. [Google Scholar]
  • 3.Quinnan GVJ, Kirmani N, Rook AH. Cytotoxic T cells in cyto-megalovirus infection: HLA-restricted T-lymphocyte and non-T-lymphocyte cytotoxic responses correlate with recovery from cytomegalovirus infection in bone-marrow-transplant recipients. N Engl J Med. 1982;307:7–13. doi: 10.1056/NEJM198207013070102. [DOI] [PubMed] [Google Scholar]
  • 4.Bukowsky JF, Woda BA, Habu S, Okumura K, Welch RM. Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immunol. 1983;131:1531–8. [PubMed] [Google Scholar]
  • 5.Habu S, Akamatsu K, Tamaoki N, Okumura In vivo significance of NK cell on resistance against virus (HSV-1) infections in mice. J Immunol. 1984;133:2743–7. [PubMed] [Google Scholar]
  • 6.Bukowski JF, Warner JF, Dennert G, Welsh RM. Adoptive transfer studies demonstrating the antiviral effect of natural killer cells In vivo. J Exp Med. 1985;161:40–52. doi: 10.1084/jem.161.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Garcia-Penarrubia P, Koster FT, Kelly RO, McDowell TD, Bank-hurst AD. Antibacterial activity of human natural killer cells. J Exp Med. 1989;169:99–113. doi: 10.1084/jem.169.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Biron CA, Byron KS, Sullivan JL. Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med. 1989;320:1731–5. doi: 10.1056/NEJM198906293202605. [DOI] [PubMed] [Google Scholar]
  • 9.Ballas ZK, Turner JM, Turner DA, Goetzman BA, Kemp JD. A patient with simultaneous absence of ‘classical’ natural killer cells (CD3−, CD16−, and NKH1+) and expansion of CD3+, CD4−, CD8−, NKH1+ subset. J Allergy Clin Immunol. 1990;85:453–9. doi: 10.1016/0091-6749(90)90155-w. [DOI] [PubMed] [Google Scholar]
  • 10.Lanier LL, Testi R, Bindl J, Philips JH. Identity of Leu19 (CD56) leukocyte differentiation antigen and neural cell adhesion molecule (N-CAM) J Exp Med. 1989;169:2233–8. doi: 10.1084/jem.169.6.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Lanier LL, Chang C, Azuma M, Ruitenberg JJ, Hemperly JJ, Philips JH. Molecular and functional analysis of human natural killer cell-associated neural cell adhesion molecule (N-CAM/ CD56) J Immunol. 1991;146:4421–6. [PubMed] [Google Scholar]
  • 12.Ravetch JV, Kinet J-P. Fc receptors. Annu Rev Immunol. 1991;9:457–92. doi: 10.1146/annurev.iy.09.040191.002325. [DOI] [PubMed] [Google Scholar]
  • 13.Ravetch JV, Perussia B. Alternative membrane forms of FcγRIII (CD16) on human NK cells and neutrophils: cell-type specific expression of 2 genes which differ in single nucleotide substitutions. J Exp Med. 1989;170:481–97. doi: 10.1084/jem.170.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Selvaraj P, Rosse WF, Silber R, Springer TA. The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal hemoglobinuria. Nature. 1988;333:565–7. doi: 10.1038/333565a0. [DOI] [PubMed] [Google Scholar]
  • 15.Simmons D, Seed B. The FcγR of natural killer cells is a phospho-lipid-linked membrane protein. Nature. 1988;333:568–70. doi: 10.1038/333568a0. [DOI] [PubMed] [Google Scholar]
  • 16.Huizinga TWJ, Van der Schoot CE, Jost C, et al. The PI-linked receptor FcγRIII is released on stimulation of neutrophils. Nature. 1988;333:667–9. doi: 10.1038/333667a0. [DOI] [PubMed] [Google Scholar]
  • 17.Selvaraj P, Carpen O, Hibbs ML, Springer TA. Natural killer cell and granulocyte FcγRIII (CD16) differ in membrane anchor and signal transduction. J Immunol. 1989;143:3283. [PubMed] [Google Scholar]
  • 18.Finberg RW, Newburger JW, Mikati MA, Heller AH, Burns JC. Effects of high doses of intravenously adminstered immune globulin on natural killer cell activity in peripheral blood. J Peds. 1992;120:376–80. doi: 10.1016/s0022-3476(05)80900-x. [DOI] [PubMed] [Google Scholar]
  • 19.Anderson CL, Looney RJ, Clup DJ, et al. Human alveolar and peritoneal macrophages bear three distinct classes of Fc receptors for IgG. J Immunol. 1990;145:196. [PubMed] [Google Scholar]
  • 20.Perussia B, Trinchieri G, Jackson A, et al. The Fc receptor for IgG on human natural killer cells: phenotypic, functional, and comparative studies with monoclonal antibodies. J Immunol. 1984;133:180–9. [PubMed] [Google Scholar]
  • 21.Griffin JD, Ritz J, Nadler LM, Schlossman SF. Expression of myeloid differentiation antigens on normal and malignant myeloid cells. J Clin Invest. 1981;68:932–41. doi: 10.1172/JCI110348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Caligiuri MA, Zmuidzians A, Manely TJ, Levine H, Smith KA, Ritz J. Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors. J Exp Med. 1990;171:1509–26. doi: 10.1084/jem.171.5.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Nagler A, Lanier LL, Philips JH. Constitutive expression of high affinity interleukin 2 receptors on human CD16− natural killer cells in vivo. J Exp Med. 1990;171:1527–33. doi: 10.1084/jem.171.5.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Hibbs ML, Tolvanen M, Carpen O. Membrane-proximal Ig-like domain of FcγRIII (CD16) contains residues critical for ligand binding. J Immunol. 1994;152:4466–74. [PubMed] [Google Scholar]
  • 25.Scallon BJ, Scigliano E, Freedman VH, Miedel MC, Pan Y-CE, Unkless JC, Kochan JP. A human immunoglobulin G receptor exists in both polypeptide-anchored and phosphatidylinositol-glycan-anchored forms. Proc Natl Acad Sci USA. 1989;86:5079–83. doi: 10.1073/pnas.86.13.5079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Lanier LL, Cwirla S, Yu G, Testi R, Philips JH. Membrane anchoring of a human IgG Fc receptor (CD16) determined by a single amino acid. Science. 1989;246:1611–3. doi: 10.1126/science.2531919. [DOI] [PubMed] [Google Scholar]
  • 27.Trounstine ML, Peltz GA, Yssel H, Huizinga TWJ, von dem Borne AEK, Spits H, Moore K. Reactivity of cloned, expressed human FcγRIII isoforms with monoclonal antibodies which distinguish cell-type specific and allelic form of FcγRIII. Int Immunol. 1990;2:303–10. doi: 10.1093/intimm/2.4.303. [DOI] [PubMed] [Google Scholar]
  • 28.Peltz GA, Grundy HO, Lebo RV, Yessel H, Brash GS, Moore KW. Human Fc gamma RIII: cloning, expression and identification of an Fc-gamma receptor chromosomal locus. Proc Natl Acad Sci USA. 1989;86:1013–7. doi: 10.1073/pnas.86.3.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Hibbs ML, Selvaraj P, Capen O, Springer OA, Kuster H, Jouvin M, Kinet J-P. Mechanisms for regulating expression of membrane isoforms of FcγRIIIA (CD16) Science. 1989;246:1608–11. doi: 10.1126/science.2531918. [DOI] [PubMed] [Google Scholar]
  • 30.de Vries E, Van Tol MJD, Koene HR, De Haas M, von dem Borne AEGK, Gratama JW, Vossen JM. Proc. of the 9th International Congress of Immunology. San Francisco, CA: 1995. A patient with recurrent infections associated with an aberrant Fc receptor (CD16) molecule on natural killer cells. (Abstr. 2267.) [Google Scholar]
  • 31.Leibson PJ. MHC-recognizing receptors: they're not just for T cells any more. Immunity. 1995;3:5–8. doi: 10.1016/1074-7613(95)90153-1. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES