Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1996 Mar;103(3):475–481. doi: 10.1111/j.1365-2249.1996.tb08305.x

Transforming growth factor-beta 1 (TGF-β1)-mediated inhibition of glial cell proliferation and down-regulation of intercellular adhesion molecule-1 (ICAM-1) are interrupted by interferon-gamma (IFN-γ)

B-G XIAO 1, G-X ZHANG 1, C-G MA 1, H LINK 1
PMCID: PMC2200371  PMID: 8608649

Abstract

We utilized a model of myelin basic protein (MBP) activation in vivo and MBP-stimulated cultures in vitro to study the influence of TGF-β1 on glial cell proliferation and ICAM-1/leucocyte function-associated antigen-1 (LFA-1) expression, and to observe the antagonistic effects of TGF-β1 and IFN-γ. TGF-β1 inhibited MBP-stimulated and MBP-activated glial cell proliferation, especially in MBP-stimulated separated microglia and astrocytes, and down-regulated the expression of ICAM-1 on MBP-stimulated glial cells and separated microglia. ICAM-1 expression on MBP-activated glial cells was intensely suppressed, whereas its expression on MBP-stimulated astrocytes was not influenced. TGF-β1 had no effect on LFA-1 expression. In contrast, IFN-γ up-regulated ICAM-1 expression, but inhibited proliferative response on MBP-stimulated glial cells when cultured without TGF-β1. Examination of TGF-β1 and IFN-γ interactions revealed that TGF-β1-mediated inhibition of proliferation and down-regulation of ICAM-1 on glial cells were prevented by IFN-γ. The suppressive effect was re-established with high doses of TGF-β1 in cultures, indicating that biological effects of TGF-β1 vary depending on nitric oxide (NO) production, its concentration in the microenvironment and regulation of the cytokine network.

Keywords: transforming growth factor-beta, interferon-gamma, intercellular adhesion molecule-1, LFA-1, glial cell culture

Full Text

The Full Text of this article is available as a PDF (696.8 KB).

References

  • 1.Sporn MB, Roberts AB. The transforming growth factor-β: past, present, and future. In: Piez KA, Sporn MB, editors. Transforming growth factor-β: chemistry, biology, and therapeutics. New York: New York Academy of Science; 1990. [DOI] [PubMed] [Google Scholar]
  • 2.Wakefield LM, Smith DM, Masui T, Harris CC, Sporn MB. Distribution and modulation of the cellular receptor for transforming growth factor-beta. J Cell Biol. 1987;105:965–75. doi: 10.1083/jcb.105.2.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Thompson NL, Flanders KC, Smith JM, Ellingsworth LR, Roberts AB, Sporn MB. Expression of transforming growth factor-β1 in specific cells and tissues of adults and neonatal mice. J Cell Biol. 1989;108:661–9. doi: 10.1083/jcb.108.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Morganti-Kossmann MC, Kossmann T, Brandes ME, Mergenhagen SE, Wahl SM. Autocrine and paracrine regulation of astrocyte function by transforming growth factor-β. J Neuroimmunol. 1992;39:163–73. doi: 10.1016/0165-5728(92)90185-n. [DOI] [PubMed] [Google Scholar]
  • 5.Constam DB, Phillip J, Malipiero UV, ten Dijke P, Schachner M, Fontana A. Differential expression of transforming growth factor-β1, β2 and β3 by glioblastoma cells, astrocytes and microglia. J Immunol. 1992;148:1404–10. [PubMed] [Google Scholar]
  • 6.da Cunha A, Jefferson JA, Jackson RW, Vitkovic L. Glial cell-specific mechanisms of TGF-β1 induction by IL-1 in cerebral cortex. J Neuroimmunol. 1993;42:71–85. doi: 10.1016/0165-5728(93)90214-j. [DOI] [PubMed] [Google Scholar]
  • 7.Suzumura A, Sawada M, Yamamoto H, Marunouchi T. Transforming growth factor-β suppresses activation and proliferation of microglia in vitro. J Immunol. 1993;151:2150–8. [PubMed] [Google Scholar]
  • 8.Czarniecki CW, Chiu HH, Wong GHW, McCabe SM, Palladino MA. Transforming growth factor-β1 modulates the expression of class II histocompatibility antigens on human cells. J Immunol. 1988;140:4217–23. [PubMed] [Google Scholar]
  • 9.Saad B, Constam DB, Ortmann R, Moos M, Fontana A, Schachner M. Astrocyte-derived TGF-β2 and HGF differentially regulate neural recognition molecule expression by cultured astrocytes. J Cell Biol. 1991;115:473–84. doi: 10.1083/jcb.115.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Santambrogio L, Hochwald GM, Saxena B, et al. Studies on mechanisms by which transforming growth factor-β protects against allergic encephalomyelitis. J Immunol. 1993;151:1116–27. [PubMed] [Google Scholar]
  • 11.Brankin B, Fabry Z, Allen IV, Cosby SL, Hart MN. Measles virus and herpes simplex upregulate ICAM-1 expression and lymphocyte adhesion to cerebral endothelium. J Neuroimmunol. 1993;43:214. doi: 10.1016/0165-5728(94)00110-a. [DOI] [PubMed] [Google Scholar]
  • 12.Soble RA, Mitchell ME, Fondren G. Intercellular adhesion molecule-1 in cellular immune reactions in the human central nervous system. Am J Pathol. 1990;136:1309–16. [PMC free article] [PubMed] [Google Scholar]
  • 13.Sharief MK, Noori MA, Ciardi M, Cireli A, Thompson EJ. Increased levels of circulating ICAM-1 in serum and cerebrospinal fluid of patients with acute multiple sclerosis. Correlation with TNF-α and blood-brain barrier damage. J Neuroimmunol. 1994;43:15–22. doi: 10.1016/0165-5728(93)90070-f. [DOI] [PubMed] [Google Scholar]
  • 14.Shrikant P, Ballestas ME, Benveniste EN. Cytokine regulation of astrocyte ICAM-1 gene expression. J Immunol. 1993;150:306A. [Google Scholar]
  • 15.Deibler GE, Martensson RE, Kies MV. Large scale preparation of myelin basic protein from central nervous tissue of several mammalian species. Prep Biochem. 1972;2:139–65. doi: 10.1080/00327487208061467. [DOI] [PubMed] [Google Scholar]
  • 16.Smith ME, McFarlin DE, Dhib-Jalbut S. Differential effect of interleukin-1β on Ia expression in astrocytes and microglia. J Neuroimmunol. 1993;46:97–104. doi: 10.1016/0165-5728(93)90238-t. [DOI] [PubMed] [Google Scholar]
  • 17.Suzumura A, Mezitis SGE, Gonatas NK, Siberberg DH. MHC antigen expression on bulk isolated macrophage-microglia from newborn mouse brain: induction of Ia antigen expression by γ-interferon. J Neuroimmunol. 1987;15:263–78. doi: 10.1016/0165-5728(87)90121-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.da Cunha A, Vitkovie L. Simultaneous preparation of four cell type enriched glial cultures from rat cerebral cortex. J Tiss Cult Meth. 1991;13:31–38. [Google Scholar]
  • 19.Cash E, Zhang Y, Rott O. Microglia present myelin antigens to T cells after phagocytosis of oligodendrocytes. Cell Immunol. 1993;147:129–38. doi: 10.1006/cimm.1993.1053. [DOI] [PubMed] [Google Scholar]
  • 20.Fox FE, Ford HC, Douglas R, Cherian S, Nowell PC. Evidence that TGF-β can inhibit human T-lymphocyte proliferation through paracrine and autocrine mechanisms. Cell Immunol. 1993;150:45–48. doi: 10.1006/cimm.1993.1177. [DOI] [PubMed] [Google Scholar]
  • 21.Hunter KE, Sporn MB, Davies AM. Transforming growth factor-β inhibit mitogen-stimulated proliferation of astrocytes. Glia. 1993;7:203–11. doi: 10.1002/glia.440070303. [DOI] [PubMed] [Google Scholar]
  • 22.Shrikant P, Chung IY, Ballestas ME, Benvenste EN. Regulation of intercellular adhesion molecule-1 gene expression by tumor necrosis factor-α, interleukin-1β and interferon-γ in astrocytes. J Neuroimmunol. 1994;51:209–20. doi: 10.1016/0165-5728(94)90083-3. [DOI] [PubMed] [Google Scholar]
  • 23.Takehara K, LeRoy EC, Grotendorst GR. TGF-β inhibition of endothelial cell proliferation: alteration of the EGF binding and EGF-induced growth-regulatory (competence) gene regulation. Cell. 1987;49:419–22. doi: 10.1016/0092-8674(87)90294-7. [DOI] [PubMed] [Google Scholar]
  • 24.Machida CM, Muldoon LL, Rodland KD, Magun BE. Transcriptional modulation of transin gene expression by epidermal growth factor and transforming growth factor-β. Mol Cell Biol. 1988;8:2479–83. doi: 10.1128/mcb.8.6.2479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Frater-Schroder M, Muller G, Birchmeier W, Bohlen P. Transforming growth factor beta inhibits endothelial cell proliferation. Biochem Biophys Res Commun. 1986;137:295–302. doi: 10.1016/0006-291x(86)91209-x. [DOI] [PubMed] [Google Scholar]
  • 26.Ottmann OG, Pelus LM. Differential proliferative effects of transforming growth factor-β on human hematopoietic progenitor cells. J Immunol. 1988;140:2661–5. [PubMed] [Google Scholar]
  • 27.Elias JA, Zitnik RJ. Cytokine-cytokine interaction in the context of cytokine networking. Am J Respir Cell Mol Biol. 1992;7:365–7. doi: 10.1165/ajrcmb/7.4.365. [DOI] [PubMed] [Google Scholar]
  • 28.Olsson T. Role of cytokines in multiple sclerosis and experimental autoimmune encephalomyelitis. Eur J Neurol. 1994;1:7–19. doi: 10.1111/j.1468-1331.1994.tb00045.x. [DOI] [PubMed] [Google Scholar]
  • 29.Nunokawa Y, Tanaka S. IFN-γ inhibits proliferation of rat vascular smooth muscle cells by nitric oxide production. Biochem Biophys Res Commun. 1992;188:409–15. doi: 10.1016/0006-291x(92)92400-r. [DOI] [PubMed] [Google Scholar]
  • 30.Espinoza-Delgado I, Bosso MC, Musso T, Mood K, Ruscetti FW, Longo DL, Varesio C. Inhinbitory cytokine circuits involving TGF-β, IFN-γ and IL-2 in human monocyte activation. Blood. 1994;83:3332–8. [PubMed] [Google Scholar]
  • 31.Ding AH, Nathan CF, Graycar J, Derynck R, Stuehr DJ, Srimal S. Macrophage deactivating factor and transforming growth factor-β1, β2, and β3 inhibit induction of macrophage nitrogen oxide synthesis by IFN-γ. J Immunol. 1990;145:940–4. [PubMed] [Google Scholar]
  • 32.Link J. Interferon-γ, interleukin-4 and transforming growth factor-β mRNA expression in multiple sclerosis and myasthenia gravis. Acta Neurol Scand. 1994;90:1–58. [PubMed] [Google Scholar]
  • 33.Link J, He B, Navikas V, Fredrikson S, Palasik W, Söderström M, Link H. Transforming growth factor-β1 suppresses autoantigen induced expression of proinflammatory cytokines but not of IL-10 in multiple sclerosis and myasthenia gravis. J Neuroimmunol. 1995;58:21–35. doi: 10.1016/0165-5728(94)00183-o. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES