Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Apr;150(1):132–140. doi: 10.1128/jb.150.1.132-140.1982

Transgalactosylation activity of ebg beta-galactosidase synthesizes allolactose from lactose.

B G Hall
PMCID: PMC220091  PMID: 6801019

Abstract

ebg enzyme, the second beta-galactosidase of Escherichia coli, does not normally convert lactose into an inducer of the lac operon. We previously reported the existence of a mutant ebg enzyme that does make such an inducer in vivo (Rolseth et al., J. Bacteriol. 142:1036-1039, 1980). Here I report that the mutant enzyme makes inducer from lactose in vitro and that the inducer is allolactose. Allolactose is made from lactose by direct transgalactosylation at a rate that is 8 to 10% of the rate of lactose hydrolysis. Galactose is also transferred to glucose free in solution, but the resulting indirect transgalactosylation products are not allolactose or lactose. The ability to efficiently synthesize allolactose is a general property of class IV mutant ebg enzymes, whereas other classes of ebg mutant enzymes are unable to synthesize allolactose efficiently. The evolutionary implications of this new function are discussed.

Full text

PDF
132

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURSTEIN C., COHN M., KEPES A., MONOD J. R OLE DU LACTOSE ET DE SES PRODUITS M'ETABOLIQUES DANS L'INDUCTION DE L'OP'ERON LACTOSE CHEZ ESCHERICHIA COLI. Biochim Biophys Acta. 1965 Apr 19;95:634–639. [PubMed] [Google Scholar]
  2. Campbell J. H., Lengyel J. A., Langridge J. Evolution of a second gene for beta-galactosidase in Escherichia coli. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1841–1845. doi: 10.1073/pnas.70.6.1841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gall B. G., Hartl D. L. Regulation of newly evolved enzymes. II. The ebg repressor. Genetics. 1975 Nov;81(3):427–435. doi: 10.1093/genetics/81.3.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hall B. G. Changes in the substrate specificities of an enzyme during directed evolution of new functions. Biochemistry. 1981 Jul 7;20(14):4042–4049. doi: 10.1021/bi00517a015. [DOI] [PubMed] [Google Scholar]
  5. Hall B. G., Clarke N. D. Regulation of newly evolved enzymes. III Evolution of the ebg repressor during selection for enhanced lactase activity. Genetics. 1977 Feb;85(2):193–201. doi: 10.1093/genetics/85.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hall B. G. Experimental evolution of a new enzymatic function. II. Evolution of multiple functions for ebg enzyme in E. coli. Genetics. 1978 Jul;89(3):453–465. doi: 10.1093/genetics/89.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hall B. G. Experimental evolution of a new enzymatic function. Kinetic analysis of the ancestral (ebg) and evolved (ebg) enzymes. J Mol Biol. 1976 Oct 15;107(1):71–84. doi: 10.1016/s0022-2836(76)80018-6. [DOI] [PubMed] [Google Scholar]
  8. Hall B. G., Hartl D. L. Regulation of newly evolved enzymes. I. Selection of a novel lactase regulated by lactose in Escherichia coli. Genetics. 1974 Mar;76(3):391–400. doi: 10.1093/genetics/76.3.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hall B. G. Methyl galactosidase activity: an alternative evolutionary destination for the ebgA0 gene. J Bacteriol. 1976 Apr;126(1):536–538. doi: 10.1128/jb.126.1.536-538.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hall B. G. On the evolution of new metabolic functions in diploid organisms. Genetics. 1980 Dec;96(4):1007–1017. doi: 10.1093/genetics/96.4.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hall B. G., Zuzel T. Evolution of a new enzymatic function by recombination within a gene. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3529–3533. doi: 10.1073/pnas.77.6.3529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huber R. E., Kurz G., Wallenfels K. A quantitation of the factors which affect the hydrolase and transgalactosylase activities of beta-galactosidase (E. coli) on lactose. Biochemistry. 1976 May 4;15(9):1994–2001. doi: 10.1021/bi00654a029. [DOI] [PubMed] [Google Scholar]
  13. Jobe A., Bourgeois S. lac Repressor-operator interaction. VI. The natural inducer of the lac operon. J Mol Biol. 1972 Aug 28;69(3):397–408. doi: 10.1016/0022-2836(72)90253-7. [DOI] [PubMed] [Google Scholar]
  14. Rolseth S. J., Fried V. A., Hall B. G. A mutant Ebg enzyme that converts lactose into an inducer of the lac operon. J Bacteriol. 1980 Jun;142(3):1036–1039. doi: 10.1128/jb.142.3.1036-1039.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schwimmer S., Bevenue A. Reagent for Differentiation of 1,4- and 1,6-Linked Glucosaccharides. Science. 1956 Mar 30;123(3196):543–544. doi: 10.1126/science.123.3196.543. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES