Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Apr;150(1):260–268. doi: 10.1128/jb.150.1.260-268.1982

Isolation and partial characterization of Bacillus subtilis mutants impaired in DNA entry.

J A Mulder, G Venema
PMCID: PMC220108  PMID: 6801021

Abstract

Transformation-deficient mutants of Bacillus subtilis have been identified either by screening for a nuclease-deficient phenotype on methyl green-DNA agar or for nontransformability on transforming DNA-containing agar. After purification of the mutations causing a reduction in the entry of DNA, a set of isogenic entry-deficient strains was obtained. In addition to being entry deficient to various extents, the strains usually were less capable of association with DNA than the entry-proficient parent. Likewise, the specific transforming activity in the purified mutant strains continued to be less than that in the wild type. With the possible exception of one strain, no evidence was obtained that the mutant strains were impaired in recombination. Since the breakdown of transforming DNA to acid-soluble products correlated fairly well with the residual capacity of the strains to take up DNA, nucleolytic activity is likely to be involved in the entry of DNA in B. subtilis.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bron S., Murray K., Trautner T. A. Restriction and modification in B. subtilis. Purification and general properties of a restriction endonuclease from strain R. Mol Gen Genet. 1975 Dec 30;143(1):13–23. doi: 10.1007/BF00269416. [DOI] [PubMed] [Google Scholar]
  2. Bron S., Venema G. Ultraviolet inactivation and excision-repair in Bacillus subtilis. I. Construction and characterization of a transformable eightfold auxotrophic strain and two ultraviolet-sensitive derivatives. Mutat Res. 1972 May;15(1):1–10. doi: 10.1016/0027-5107(72)90086-3. [DOI] [PubMed] [Google Scholar]
  3. Buitenwerf J., Venema G. Transformation in Bacillus subtilis: biological and physical evidence for a novel DNA-intermediate in synchronously transforming cells. Mol Gen Genet. 1977 Nov 14;156(2):145–155. doi: 10.1007/BF00283487. [DOI] [PubMed] [Google Scholar]
  4. Buitenwerf J., Venema G. Transformation in bacillus subtilis: fate of transforming DNA in transformation deficient mutants. Mol Gen Genet. 1977 Mar 7;151(2):203–213. doi: 10.1007/BF00338696. [DOI] [PubMed] [Google Scholar]
  5. Davidoff-Abelson R., Dubnau D. Conditions affecting the isolation from transformed cells of Bacillus subtilis of high-molecular-weight single-stranded deoxyribonucleic acid of donor origin. J Bacteriol. 1973 Oct;116(1):146–153. doi: 10.1128/jb.116.1.146-153.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davidoff-Abelson R., Dubnau D. Kinetic analysis of the products of donor deoxyribonucleate in transformed cells of Bacillus subtilis. J Bacteriol. 1973 Oct;116(1):154–162. doi: 10.1128/jb.116.1.154-162.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dubnau D., Cirigliano C. Fate of transforming DNA following uptake by competent Bacillus subtilis. Formation and properties of products isolated from transformed cells which are derived entirely from donor DNA. J Mol Biol. 1972 Feb 28;64(1):9–29. doi: 10.1016/0022-2836(72)90318-x. [DOI] [PubMed] [Google Scholar]
  8. Ferrari E., Canosi U., Galizzi A., Mazza G. Studies on transduction process by SPP1 phage. J Gen Virol. 1978 Dec;41(3):563–572. doi: 10.1099/0022-1317-41-3-563. [DOI] [PubMed] [Google Scholar]
  9. Joenje H., Admiraal W., Venema G. Isolation and partial characterization of a temperature-sensitive mutant of Bacillus subtilis impaired in the development of competence for genetic transformation. J Gen Microbiol. 1973 Sep;78(1):67–77. doi: 10.1099/00221287-78-1-67. [DOI] [PubMed] [Google Scholar]
  10. Joenje H., Venema G. Different nuclease activities in competent and noncompetent Bacillus subtilis. J Bacteriol. 1975 Apr;122(1):25–33. doi: 10.1128/jb.122.1.25-33.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KIRBY K. S. A new method for the isolation of deoxyribonucleic acids; evidence on the nature of bonds between deoxyribonucleic acid and protein. Biochem J. 1957 Jul;66(3):495–504. doi: 10.1042/bj0660495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LACKS S. Molecular fate of DNA in genetic transformation of Pneumococcus. J Mol Biol. 1962 Jul;5:119–131. doi: 10.1016/s0022-2836(62)80067-9. [DOI] [PubMed] [Google Scholar]
  13. Lacks S., Greenberg B., Neuberger M. Identification of a deoxyribonuclease implicated in genetic transformation of Diplococcus pneumoniae. J Bacteriol. 1975 Jul;123(1):222–232. doi: 10.1128/jb.123.1.222-232.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lacks S., Greenberg B., Neuberger M. Role of a deoxyribonuclease in the genetic transformation of Diplococcus pneumoniae. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2305–2309. doi: 10.1073/pnas.71.6.2305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lacks S. Mutants of Diplococcus pneumoniae that lack deoxyribonucleases and other activities possibly pertinent to genetic transformation. J Bacteriol. 1970 Feb;101(2):373–383. doi: 10.1128/jb.101.2.373-383.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lacks S., Neuberger M. Membrane location of a deoxyribonuclease implicated in the genetic transformation of Diplococcus pneumoniae. J Bacteriol. 1975 Dec;124(3):1321–1329. doi: 10.1128/jb.124.3.1321-1329.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mazza G., Fortunato A., Ferrari E., Canosi U., Falaschi A., Polsinelli M. Genetic and enzymic studies on the recombination process in Bacillus subtilis. Mol Gen Genet. 1975;136(1):9–30. doi: 10.1007/BF00275445. [DOI] [PubMed] [Google Scholar]
  18. Morrison D. A. Early intermediate state of transforming deoxyribonucleic acid during uptake by Bacillus subtilis. J Bacteriol. 1971 Oct;108(1):38–44. doi: 10.1128/jb.108.1.38-44.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Piechowska M., Fox M. S. Fate of transforming deoxyribonucleate in Bacillus subtilis. J Bacteriol. 1971 Nov;108(2):680–689. doi: 10.1128/jb.108.2.680-689.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. VENEMA G., PRITCHARD R. H., VENEMA-SCHROEDER T. FATE OF TRANSFORMING DEOXYRIBONUCLEIC ACID IN BACILLUS SUBTILIS. J Bacteriol. 1965 May;89:1250–1255. doi: 10.1128/jb.89.5.1250-1255.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES