Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1968 Mar 1;51(3):369–384. doi: 10.1085/jgp.51.3.369

The Dynamic Properties of Mammalian Skeletal Muscle

Alan S Bahler 1, John T Fales 1, Kenneth L Zierler 1
PMCID: PMC2201129  PMID: 5648833

Abstract

The dynamic characteristics of the rat gracilis anticus muscle at 17.5°C have been determined by isotonic and isometric loading. For a fixed initial length these characteristics were represented either as a family of length-velocity phase trajectories at various isotonic afterloads or as a series of force-velocity curves at different lengths. An alternate method of viewing these data, the length-external load-velocity phase space, was also generated. When the muscle was allowed to shorten from different initial lengths, the velocity of shortening achieved at a given length was lower for longer initial lengths. The amount of departure was also dependent upon the isotonic load, the greater the load the greater the departure. The departures were not caused by changes in the elastic elements of the muscle or fatigue in the ordinary sense. When the behavior of the muscle was investigated at different frequencies of stimulation, the shortening velocity was a function of the number of stimulating pulses received by the muscle at a given frequency. The shortening velocity of the rat gracilis anticus muscle is, therefore, not only a function of load and length, but also of an additional variable related to the time elapsed from onset of stimulation.

Full Text

The Full Text of this article is available as a PDF (995.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fenn W. O., Marsh B. S. Muscular force at different speeds of shortening. J Physiol. 1935 Nov 22;85(3):277–297. doi: 10.1113/jphysiol.1935.sp003318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gordon A. M., Huxley A. F., Julian F. J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol. 1966 May;184(1):170–192. doi: 10.1113/jphysiol.1966.sp007909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. SONNENBLICK E. H. INSTANTANEOUS FORCE-VELOCITY-LENGTH DETERMINANTS IN THE CONTRACTION OF HEART MUSCLE. Circ Res. 1965 May;16:441–451. doi: 10.1161/01.res.16.5.441. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES