Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1968 Mar 1;51(3):399–425. doi: 10.1085/jgp.51.3.399

Permeability of Alkali Metal Cations in Lobster Muscle

A comparison of electrophysiological and osmometric analyses

Harold Gainer 1, Harry Grundfest 1
PMCID: PMC2201130  PMID: 5648835

Abstract

Single muscle fibers from lobster walking legs are effectively impermeable to Na, but are permeable to K. They shrink in hyperosmotic NaCl; they swell in low NaCl media which are hyposmotic or which are made isosmotic with the addition of KCl. In conformity, the membrane potential is relatively insensitive to changes in external Na, while it responds according to the Nernst relation for changes in external K. When the medium is made isosmotic or hyperosmotic with RbCl the volume and membrane potential changes are of essentially the same magnitudes as those in media enriched with KCl. The time courses for attaining equilibrium are slower, indicating that Rb is less permeant than K. Substitution of CsCl for NaCl (isosmotic condition) produces no change in volume of the muscle fiber. Addition of CsCl (hyperosmotic condition) causes a shrinkage which attains a steady state, as is the case in hyperosmotic NaCl. Osmotically, therefore, Cs appears to be no more permeant than is Na. However, the membrane depolarizes slowly in Cs-enriched media and eventually comes to behave as an ideal Cs electrode. Thus, the electrode properties of the lobster muscle fiber membrane may not depend upon the diffusional relations of the membrane and ions, and the osmotic permeability of the membrane for a given cation may not correspond with the electrophysiologically deduced permeability. Comparative data on the effects of NH4 and Li are also included and indicate several other degrees of complexity in the cell membrane.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol. 1956 Sep 27;133(3):631–658. doi: 10.1113/jphysiol.1956.sp005615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BAKER P. F., HODGKIN A. L., SHAW T. I. The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J Physiol. 1962 Nov;164:355–374. doi: 10.1113/jphysiol.1962.sp007026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BELTON P., GRUNDFEST H. Potassium activation and K spikes in muscle fibers of the mealworm Iarva (Tenebrio molitor). Am J Physiol. 1962 Sep;203:588–594. doi: 10.1152/ajplegacy.1962.203.3.588. [DOI] [PubMed] [Google Scholar]
  4. Freeman A. R., Reuben J. P., Brandt P. W., Grundfest H. Osmometrically determined characteristics of the cell membrane of squid and lobster giant axons. J Gen Physiol. 1966 Nov;50(2):423–445. doi: 10.1085/jgp.50.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GIRARDIER L., REUBEN J. P., BRANDT P. W., GRUNDFEST H. EVIDENCE FOR ANION-PERMSELECTIVE MEMBRANE IN CRAYFISH MUSCLE FIBERS AND ITS POSSIBLE ROLE IN EXCITATION-CONTRACTION COUPLING. J Gen Physiol. 1963 Sep;47:189–214. doi: 10.1085/jgp.47.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GRUNDFEST H., KAO C. Y., ALTAMIRANO M. Bioelectric effects of ions microinjected into the giant axon of Loligo. J Gen Physiol. 1954 Nov 20;38(2):245–282. doi: 10.1085/jgp.38.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GRUNDFEST H., REUBEN J. P., RICKLES W. H., Jr The electrophysiology and pharmacology of lobster neuromuscular synapses. J Gen Physiol. 1959 Jul 20;42(6):1301–1323. doi: 10.1085/jgp.42.6.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ilani A. Interaction between cations in hydrophobic solvent-saturated filters containing fixed negative charges. Biophys J. 1966 May;6(3):329–352. doi: 10.1016/S0006-3495(66)86660-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nakamura Y., Nakajima S., Grundfest H. Analysis of Spike Electrogenesis and Depolarizing K Inactivation in Electroplaques of Electrophorus electricus, L. J Gen Physiol. 1965 Nov 1;49(2):321–349. doi: 10.1085/jgp.49.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ozeki M., Freeman A. R., Grundfest H. The membrane components of crustacean neuromuscular systems. II. Analysis of interactions among the electrogenic components. J Gen Physiol. 1966 Jul;49(6):1335–1349. doi: 10.1085/jgp.0491335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ozeki M., Grundfest H. Crayfish muscle fiber: ionic requirements for depolarizing synaptic electrogenesis. Science. 1967 Jan 27;155(3761):478–481. doi: 10.1126/science.155.3761.478. [DOI] [PubMed] [Google Scholar]
  13. REUBEN J. P., GIRARDIER L., GRUNDFEST H. WATER TRANSFER AND CELL STRUCTURE IN ISOLATED CRAYFISH MUSCLE FIBERS. J Gen Physiol. 1964 Jul;47:1141–1174. doi: 10.1085/jgp.47.6.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES