Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1968 Mar 1;51(3):279–291. doi: 10.1085/jgp.51.3.279

The Action of Certain Polyvalent Cations on the Voltage-Clamped Lobster Axon

M P Blaustein 1, D E Goldman 1
PMCID: PMC2201132  PMID: 5648828

Abstract

Calcium appears to be an essential participant in axon excitation processes. Many other polyvalent metal ions have calcium-like actions on axons. We have used the voltage-clamped lobster giant axon to test the effect of several of these cations on the position of the peak initial (sodium) and steady-state (potassium) conductance vs. voltage curves on the voltage axis as well as on the rate parameters for excitation processes. Among the alkaline earth metals, Mg+2 is a very poor substitute for Ca+2, while Ba+2 behaves like "high calcium" when substituted for Ca+2 on a mole-for-mole basis. The transition metal ions, Ni+2, Co+2, and Cd+2 also act like high calcium when substituted mole-for-mole. Among the trivalent ions, La+3 is a very effective Ca+2 replacement. Al+3 and Fe+3 are extremely active and seem to have some similar effects. Al+3 is effective at concentrations as low as 10-5 M. The data suggest that many of these ions may interact with the same cation-binding sites on the axon membrane, and that the relative effects on the membrane conductance and rate parameters depend on the relative binding constants of the ions. The total amount of Na+ transferred during a large depolarizing transient is nearly independent of the kind or amount of polyvalent ion applied.

Full Text

The Full Text of this article is available as a PDF (707.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRINK F. The role of calcium ions in neural processes. Pharmacol Rev. 1954 Sep;6(3):243–298. [PubMed] [Google Scholar]
  2. Blaustein M. P., Goldman D. E. Competitive action of calcium and procaine on lobster axon. A study of the mechanism of action of certain local anesthetics. J Gen Physiol. 1966 May;49(5):1043–1063. doi: 10.1085/jgp.49.5.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blaustein M. P., Goldman D. E. Origin of axon membrane hyperpolarization under sucrose-gap. Biophys J. 2008 Dec 31;6(4):453–470. doi: 10.1016/S0006-3495(66)86669-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blaustein M. P. Phospholipids as ion exchangers: implications for a possible role in biological membrane excitability and anesthesia. Biochim Biophys Acta. 1967 Sep 9;135(4):653–668. doi: 10.1016/0005-2736(67)90096-x. [DOI] [PubMed] [Google Scholar]
  5. DALTON J. C. Effects of external ions on membrane potentials of a lobster giant axon. J Gen Physiol. 1958 Jan 20;41(3):529–542. doi: 10.1085/jgp.41.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GOLDMANN D. E. A MOLECULAR STRUCTURAL BASIS FOR THE EXCITATION PROPERTIES OF AXONS. Biophys J. 1964 May;4:167–188. doi: 10.1016/s0006-3495(64)86776-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldman D. E., Blaustein M. P. Ions, drugs and the axon membrane. Ann N Y Acad Sci. 1966 Jul 14;137(2):967–981. doi: 10.1111/j.1749-6632.1966.tb50210.x. [DOI] [PubMed] [Google Scholar]
  8. JULIAN F. J., MOORE J. W., GOLDMAN D. E. Current-voltage relations in the lobster giant axon membrane under voltage clamp conditions. J Gen Physiol. 1962 Jul;45:1217–1238. doi: 10.1085/jgp.45.6.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Moore J. W., Anderson N., Blaustein M., Takata M., Lettvin J. Y., Pickard W. F., Bernstein T., Pooler J. Alkali cation selectivity of squid axon membrane. Ann N Y Acad Sci. 1966 Jul 14;137(2):818–829. doi: 10.1111/j.1749-6632.1966.tb50202.x. [DOI] [PubMed] [Google Scholar]
  10. Sandow A., Isaacson A. Topochemical factors in potentiation of contraction by heavy metal cations. J Gen Physiol. 1966 May;49(5):937–961. doi: 10.1085/jgp.49.5.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. TAKAHASHI H., MURAI T., SASAKI T. Some chemical aspect of plateau formation in the action current of the myelinated nerve fibre. Jpn J Physiol. 1960 Jun 29;10:280–291. doi: 10.2170/jjphysiol.10.280. [DOI] [PubMed] [Google Scholar]
  12. Takata M., Moore J. W., Kao C. Y., Fuhrman F. A. Blockage of sodium conductance increase in lobster giant axon by tarichatoxin (tetrodotoxin). J Gen Physiol. 1966 May;49(5):977–988. doi: 10.1085/jgp.49.5.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Takata M., Pickard W. F., Lettvin J. Y., Moore J. W. Ionic conductance changes in lobster axon membrane when lanthanum is substituted for calcium. J Gen Physiol. 1966 Nov;50(2):461–471. doi: 10.1085/jgp.50.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. del CASTILLO-NICOLAU J., HUFSCHMIDT H. J. Reversible poisoning of nerve fibers by heavy-metal ions. Nature. 1951 Jan 27;167(4239):146–147. doi: 10.1038/167146b0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES