Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1968 Mar 1;51(3):293–307. doi: 10.1085/jgp.51.3.293

Barbiturates Block Sodium and Potassium Conductance Increases in Voltage-Clamped Lobster Axons

M P Blaustein 1
PMCID: PMC2201133  PMID: 5648829

Abstract

Sodium pentobarbital and sodium thiopental decrease both the peak initial (Na) and late steady-state (K) currents and reduce the maximum sodium and potassium conductance increases in voltage-clamped lobster giant axons. These barbiturates also slow the rate at which the sodium conductance turns on, and shift the normalized sodium conductance vs. voltage curves in the direction of depolarization along the voltage axis. Since pentobarbital (pKa = 8.0) blocks the action potential more effectively at pH 8.5 than at pH 6.7, the anionic form of the drug appears to be active. The data suggest that these drugs affect the axon membrane directly, rather than secondarily through effects on intermediary metabolism. It is suggested that penetration of the lipid layer of the membrane by the nonpolar portion of the barbiturate molecules may cause the decrease in membrane conductances, while electrostatic interactions involving the anionic group on the barbiturate, divalent cations, and "fixed charges" in the membrane could account for the slowing of the rate of sodium conductance turn-on and the shift of the normalized conductance curves along the voltage axis.

Full Text

The Full Text of this article is available as a PDF (780.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMSTRONG C. M., BINSTOCK L. THE EFFECTS OF SEVERAL ALCOHOLS ON THE PROPERTIES OF THE SQUID GIANT AXON. J Gen Physiol. 1964 Nov;48:265–277. doi: 10.1085/jgp.48.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BAIRD W. M., HARDMAN H. F. An analysis of the effect of pH, procaine cation, nonionized procaine and procaine ethylchloride cation upon cardiac conduction time, stimulation threshold, amplitude of contraction and the relationship of these parameters to antiarrhythmic activity. J Pharmacol Exp Ther. 1961 Jun;132:382–391. [PubMed] [Google Scholar]
  3. BUTLER T. C. Theories of general anesthesia. J Pharmacol Exp Ther. 1950 Apr;98(42):121–160. [PubMed] [Google Scholar]
  4. Blaustein M. P. Action of certain tropine esters on voltage-clamped lobster axon. J Gen Physiol. 1968 Mar;51(3):309–319. doi: 10.1085/jgp.51.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blaustein M. P., Goldman D. E. Action of anionic and cationic nerve-blocking agents: experiment and interpretation. Science. 1966 Jul 22;153(3734):429–432. doi: 10.1126/science.153.3734.429. [DOI] [PubMed] [Google Scholar]
  6. Blaustein M. P., Goldman D. E. Competitive action of calcium and procaine on lobster axon. A study of the mechanism of action of certain local anesthetics. J Gen Physiol. 1966 May;49(5):1043–1063. doi: 10.1085/jgp.49.5.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blaustein M. P., Goldman D. E. Origin of axon membrane hyperpolarization under sucrose-gap. Biophys J. 2008 Dec 31;6(4):453–470. doi: 10.1016/S0006-3495(66)86669-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blaustein M. P., Goldman D. E. The action of certain polyvalent cations on the voltage-clamped lobster axon. J Gen Physiol. 1968 Mar;51(3):279–291. doi: 10.1085/jgp.51.3.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chandler W. K., Hodgkin A. L., Meves H. The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons. J Physiol. 1965 Oct;180(4):821–836. doi: 10.1113/jphysiol.1965.sp007733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FRANKENHAEUSER B. The effect of calcium on the myelinated nerve fibre. J Physiol. 1957 Jul 11;137(2):245–260. doi: 10.1113/jphysiol.1957.sp005809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HARDMAN H. F., MOORE J. I., LUM B. K. A method for analyzing the effect of pH and the ionization of drugs upon cardiac tissue with special reference to pentobarbital. J Pharmacol Exp Ther. 1959 Jun;126(2):136–142. [PubMed] [Google Scholar]
  12. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. JULIAN F. J., MOORE J. W., GOLDMAN D. E. Current-voltage relations in the lobster giant axon membrane under voltage clamp conditions. J Gen Physiol. 1962 Jul;45:1217–1238. doi: 10.1085/jgp.45.6.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. JULIAN F. J., MOORE J. W., GOLDMAN D. E. Membrane potentials of the lobster giant axon obtained by use of the sucrose-gap technique. J Gen Physiol. 1962 Jul;45:1195–1216. doi: 10.1085/jgp.45.6.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KISHIMOTO U., ADELMAN W. J., Jr EFFECT OF DETERGENT ON ELECTRICAL PROPERTIES OF SQUID AXON MEMBRANE. J Gen Physiol. 1964 May;47:975–986. doi: 10.1085/jgp.47.5.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MOORE J. W., NARAHASHI T., ULBRICHT W. SODIUM CONDUCTANCE SHIFT IN AN AXON INTERNALLY PERFUSED WITH A SUCROSE AND LOW-POTASSIUM SOLUTION. J Physiol. 1964 Aug;172:163–173. doi: 10.1113/jphysiol.1964.sp007410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MOORE J. W., ULBRICHT W., TAKATA M. EFFECT OF ETHANOL ON THE SODIUM AND POTASSIUM CONDUCTANCES OF THE SQUID AXON MEMBRANE. J Gen Physiol. 1964 Nov;48:279–295. doi: 10.1085/jgp.48.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Moore J. W., Anderson N., Blaustein M., Takata M., Lettvin J. Y., Pickard W. F., Bernstein T., Pooler J. Alkali cation selectivity of squid axon membrane. Ann N Y Acad Sci. 1966 Jul 14;137(2):818–829. doi: 10.1111/j.1749-6632.1966.tb50202.x. [DOI] [PubMed] [Google Scholar]
  20. NARAHASHI T., MOORE J. W., SCOTT W. R. TETRODOTOXIN BLOCKAGE OF SODIUM CONDUCTANCE INCREASE IN LOBSTER GIANT AXONS. J Gen Physiol. 1964 May;47:965–974. doi: 10.1085/jgp.47.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Narahashi T., Anderson N. C., Moore J. W. Comparison of tetrodotoxin and procaine in internally perfused squid giant axons. J Gen Physiol. 1967 May;50(5):1413–1428. doi: 10.1085/jgp.50.5.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SHANES A. M., FREYGANG W. H., GRUNDFEST H., AMATNIEK E. Anesthetic and calcium action in the voltage-clamped squid giant axon. J Gen Physiol. 1959 Mar 20;42(4):793–802. doi: 10.1085/jgp.42.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. TAKAHASHI H., MURAI T., SASAKI T. Plateau formation and sulphydryl groups in the plasma membrane. Nature. 1958 Dec 13;182(4650):1675–1677. doi: 10.1038/1821675a0. [DOI] [PubMed] [Google Scholar]
  24. TAYLOR R. E. Effect of procaine on electrical properties of squid axon membrane. Am J Physiol. 1959 May;196(5):1071–1078. doi: 10.1152/ajplegacy.1959.196.5.1071. [DOI] [PubMed] [Google Scholar]
  25. Takata M., Moore J. W., Kao C. Y., Fuhrman F. A. Blockage of sodium conductance increase in lobster giant axon by tarichatoxin (tetrodotoxin). J Gen Physiol. 1966 May;49(5):977–988. doi: 10.1085/jgp.49.5.977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES