Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1968 Mar 1;51(3):347–368. doi: 10.1085/jgp.51.3.347

Electrical Transmission at the Nexus between Smooth Muscle Cells

L Barr 1, W Berger 1, M M Dewey 1
PMCID: PMC2201134  PMID: 5648832

Abstract

The hypothesis that nexuses between cells are responsible for the core conductor properties of tissues was tested using smooth muscle preparations from the taenia coli of guinea pigs. Action potentials recorded from small diameter preparations across a sucrose gap change from monophasic to diphasic when a shunt resistor is connected across the gap. This indicates that transmission between smooth muscle cells is electrical, because the resistor only allows current to flow. Nexal fusion of cell membranes occurs especially where one cell sends a large bulbous projection into a neighbor. Hypertonic solutions rupture the nexuses between smooth muscle cells. Hypertonicity also increases the resistance of a bundle across the sucrose gap and blocks propagation of action potentials. Thus the structural and functional changes in smooth muscle due to hypertonicity correlate with the hypothesis.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARR L., BERGER W. THE ROLE OF CURRENT FLOW IN THE PROPAGATION OF CARDIAC MUSCLE ACTION POTENTIALS. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964 Apr 13;279:192–194. doi: 10.1007/BF00412779. [DOI] [PubMed] [Google Scholar]
  2. BARR L., DEWEY M. M., BERGER W. PROPAGATION OF ACTION POTENTIALS AND THE STRUCTURE OF THE NEXUS IN CARDIAC MUSCLE. J Gen Physiol. 1965 May;48:797–823. doi: 10.1085/jgp.48.5.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BARR L. Transmembrane resistance of smooth muscle cells. Am J Physiol. 1961 Jun;200:1251–1255. doi: 10.1152/ajplegacy.1961.200.6.1251. [DOI] [PubMed] [Google Scholar]
  4. Barr L. Propagation in vertebrate visceral smooth muscle. J Theor Biol. 1963 Jan;4(1):73–85. doi: 10.1016/0022-5193(63)90101-2. [DOI] [PubMed] [Google Scholar]
  5. Bergman R. A. Uterine smooth muscle fibers in castrate and estrogen-treated rats. J Cell Biol. 1968 Mar;36(3):639–648. doi: 10.1083/jcb.36.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dewey M. M., Barr L. Intercellular Connection between Smooth Muscle Cells: the Nexus. Science. 1962 Aug 31;137(3531):670–672. doi: 10.1126/science.137.3531.670-a. [DOI] [PubMed] [Google Scholar]
  7. Dewey M. M. The anatomical basis of propagation in smooth muscle. Gastroenterology. 1965 Oct;49(4):395–402. [PubMed] [Google Scholar]
  8. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FURSHPAN E. J., POTTER D. D. Transmission at the giant motor synapses of the crayfish. J Physiol. 1959 Mar 3;145(2):289–325. doi: 10.1113/jphysiol.1959.sp006143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hays R. M., Singer B., Malamed S. The effect of calcium withdrawal on the structure and function of the toad bladder. J Cell Biol. 1965 Jun;25(3 Suppl):195–208. doi: 10.1083/jcb.25.3.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Loewenstein W. R. Permeability of membrane junctions. Ann N Y Acad Sci. 1966 Jul 14;137(2):441–472. doi: 10.1111/j.1749-6632.1966.tb50175.x. [DOI] [PubMed] [Google Scholar]
  12. Martin A. R., Veale J. L. The nervous system at the cellular level. Annu Rev Physiol. 1967;29:401–426. doi: 10.1146/annurev.ph.29.030167.002153. [DOI] [PubMed] [Google Scholar]
  13. Muir A. R. The effects of divalent cations on the ultrastructure of the perfused rat heart. J Anat. 1967 Apr;101(Pt 2):239–261. [PMC free article] [PubMed] [Google Scholar]
  14. NAGAI T., PROSSER C. L. Electrical parameters of smooth muscle cells. Am J Physiol. 1963 May;204:915–924. doi: 10.1152/ajplegacy.1963.204.5.915. [DOI] [PubMed] [Google Scholar]
  15. PROSSER C. L., SPERELAKIS N. Transmission in ganglion-free circular muscle from the cat intestine. Am J Physiol. 1956 Dec;187(3):536–545. doi: 10.1152/ajplegacy.1956.187.3.536. [DOI] [PubMed] [Google Scholar]
  16. SEDAR A. W., FORTE J. G. EFFECTS OF CALCIUM DEPLETION ON THE JUNCTIONAL COMPLEX BETWEEN OXYNTIC CELLS OF GASTRIC GLANDS. J Cell Biol. 1964 Jul;22:173–188. doi: 10.1083/jcb.22.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SPERELAKIS N., HOSHIKO T., KELLER R. F., Jr, BERNE R. M. Intracellular and external recording from frog ventricular fibers during hypertonic perfusion. Am J Physiol. 1960 Jan;198:135–140. doi: 10.1152/ajplegacy.1960.198.1.135. [DOI] [PubMed] [Google Scholar]
  18. SPERELAKIS N., TARR M. WEAK ELECTRONIC INTERACTION BETWEEN NEIGHBORING VISCERAL SMOOTH MUSCLE CELLS. Am J Physiol. 1965 Apr;208:737–747. doi: 10.1152/ajplegacy.1965.208.4.737. [DOI] [PubMed] [Google Scholar]
  19. Tomita T. Electrical responses of smooth muscle to external stimulation in hypertonic solution. J Physiol. 1966 Mar;183(2):450–468. doi: 10.1113/jphysiol.1966.sp007876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ussing H. H. Anomalous transport of electrolytes and sucrose through the isolated frog skin induced by hypertonicity of the outside bathing solution. Ann N Y Acad Sci. 1966 Jul 14;137(2):543–555. doi: 10.1111/j.1749-6632.1966.tb50180.x. [DOI] [PubMed] [Google Scholar]
  21. WINEGRAD S. AUTORADIOGRAPHIC STUDIES OF INTRACELLULAR CALCIUM IN FROG SKELETAL MUSCLE. J Gen Physiol. 1965 Jan;48:455–479. doi: 10.1085/jgp.48.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES