Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1968 Jan 1;51(1):65–83. doi: 10.1085/jgp.51.1.65

Intracellular Calcium Movements of Frog Skeletal Muscle during Recovery from Tetanus

Saul Winegrad 1
PMCID: PMC2201154  PMID: 4868186

Abstract

Radioautographs of 45Ca-labeled frog skeletal muscles have been prepared using freeze-dry and vapor fixation techniques to avoid displacement of the isotope during the preparation of the radioautographs. 45Ca has been localized in resting muscles exposed to 45Ca Ringer's for 5 min or 5 hr and in isotopically labeled muscles recovering from tetanic stimulation at room temperature or at 4°C. In muscles soaked at rest for 5 min 45Ca was present almost exclusively in the terminal cisternae. In all other muscles there were three sites at which the isotope was concentrated: (a) the terminal cisternae, (b) the intermediate cisternae and the longitudinal tubules, and (c) the A band portion of the myofibrils. The terminal cisternae were labeled more rapidly than the myofibrils, but both exchanges were accelerated by electrical stimulation. The amount of 45Ca in the longitudinal tubules and the intermediate cisternae decreased with time after a tetanus as the amount in the terminal cisternae increased. It is proposed that electrical stimulation releases calcium from the terminal cisternae and that relaxation occurs from the binding of the released calcium by the longitudinal tubules and the intermediate cisternae. Complete recovery from mechanical activity involves the transport of this bound calcium into the reticulum and its subsequent binding by the terminal cisternae. Resting exchange of calcium occurs primarily between the terminal cisternae and the transverse tubules.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CAIN D. F., INFANTE A. A., DAVIES R. E. Chemistry of muscle contraction. Adenosine triphosphate and phosphorylcreatine as energy supplies for single contractions of working muscle. Nature. 1962 Oct 20;196:214–217. doi: 10.1038/196214a0. [DOI] [PubMed] [Google Scholar]
  2. COSTANTIN L. L., FRANZINI-ARMSTRONG C., PODOLSKY R. J. LOCALIZATION OF CALCIUM-ACCUMULATING STRUCTURES IN STRIATED MUSCLE FIBERS. Science. 1965 Jan 8;147(3654):158–160. doi: 10.1126/science.147.3654.158. [DOI] [PubMed] [Google Scholar]
  3. Carvalho A. P. Binding of cations by microsomes from rabbit skeletal muscle. J Cell Physiol. 1966 Feb;67(1):73–83. doi: 10.1002/jcp.1040670109. [DOI] [PubMed] [Google Scholar]
  4. EBASHI F., YAMANOUCHI I. CALCIUM ACCUMULATION AND ADENOSINETRIPHOSPHATASE OF THE RELAXING FACTOR. J Biochem. 1964 May;55:504–509. [PubMed] [Google Scholar]
  5. HASSELBACH W. RELAXATION AND THE SARCOTUBULAR CALCIUM PUMP. Fed Proc. 1964 Sep-Oct;23:909–912. [PubMed] [Google Scholar]
  6. HUXLEY H. E. EVIDENCE FOR CONTINUITY BETWEEN THE CENTRAL ELEMENTS OF THE TRIADS AND EXTRACELLULAR SPACE IN FROG SARTORIUS MUSCLE. Nature. 1964 Jun 13;202:1067–1071. doi: 10.1038/2021067b0. [DOI] [PubMed] [Google Scholar]
  7. Jöbsis F. F., O'Connor M. J. Calcium release and reabsorption in the sartorius muscle of the toad. Biochem Biophys Res Commun. 1966 Oct 20;25(2):246–252. doi: 10.1016/0006-291x(66)90588-2. [DOI] [PubMed] [Google Scholar]
  8. Makinose M., Hasselbach W. Der Einfluss von Oxalat auf den Calcium-Transport isolierter Vesikel des sarkoplasmatischen Reticulum. Biochem Z. 1965 Dec 31;343(4):360–382. [PubMed] [Google Scholar]
  9. Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
  10. Pease D. C., Jenden D. J., Howell J. N. Calcium uptake in glycerol-extracted rabbit psoas muscle fibers. II. Electron microscopic localization of uptake sites. J Cell Physiol. 1965 Apr;65(2):141–153. doi: 10.1002/jcp.1030650203. [DOI] [PubMed] [Google Scholar]
  11. WEBER A., HERZ R., REISS I. On the mechanism of the relaxing effect of fragmented sarcoplasmic reticulum. J Gen Physiol. 1963 Mar;46:679–702. doi: 10.1085/jgp.46.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. WEBER A., HERZ R. The binding of calcium to actomyosin systems in relation to their biological activity. J Biol Chem. 1963 Feb;238:599–605. [PubMed] [Google Scholar]
  13. WINEGRAD S. AUTORADIOGRAPHIC STUDIES OF INTRACELLULAR CALCIUM IN FROG SKELETAL MUSCLE. J Gen Physiol. 1965 Jan;48:455–479. doi: 10.1085/jgp.48.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Winegrad S. The location of muscle calcium with respect to the myofibrils. J Gen Physiol. 1965 Jul;48(6):997–1002. doi: 10.1085/jgp.48.6.997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES