Abstract
Skeletal muscle myofibrils, in the presence of 2 mM MgCl2 at pH 7.0, were found to have two classes of calcium-binding sites with apparent affinity constants of 2.1 x 106 M -1 (class 1) and ∼3 x 104 M -1 (class 2), respectively. At free calcium concentrations essential for the activation of myofibrillar contraction (∼10-6 M) there would be significant calcium binding only to the class 1 sites. These sites could bind about 1.3 µmoles of calcium per g protein. Extraction of myosin from the myofibrils did not alter their calcium-binding parameters. Myosin A, under identical experimental conditions, had little affinity for calcium. The class 1 sites are, therefore, presumed to be located in the I filaments. The class 1 sites could only be detected in F actin and myosin B preparations which were contaminated with the tropomyosin-troponin complex. Tropomyosin bound very little calcium. Troponin, which in conjunction with tropomyosin confers calcium sensitivity on actomyosin systems, could bind 22 µmoles of calcium per g protein with an apparent affinity constant of 2.4 x 106 M -1. In view of the identical affinity constants of the myofibrils and troponin and the much greater number of calcium-binding sites on troponin it is suggested that calcium activates myofibrillar contraction by binding to the troponin molecule.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Azuma N., Watanabe S. The major component of metin from rabbit skeletal and bovine cardiac muscle. J Biol Chem. 1965 Oct;240(10):3847–3851. [PubMed] [Google Scholar]
- Azuma N., Watanabe S. The minor component of metin from rabbit skeletal muscle. J Biol Chem. 1965 Oct;240(10):3852–3857. [PubMed] [Google Scholar]
- Borle A. B., Briggs F. N. Microdetermination of calcium in biological material by automatic fluorometric titration. Anal Chem. 1968 Feb;40(2):339–344. doi: 10.1021/ac60258a056. [DOI] [PubMed] [Google Scholar]
- CARSTEN M. E., MOMMAERTS W. F. A study of actin by means of starch gel electrophoresis. Biochemistry. 1963 Jan-Feb;2:28–32. doi: 10.1021/bi00901a006. [DOI] [PubMed] [Google Scholar]
- Cohen C., Longley W. Tropomyosin paracrystals formed by divalent cations. Science. 1966 May 6;152(3723):794–796. doi: 10.1126/science.152.3723.794. [DOI] [PubMed] [Google Scholar]
- Corsi A., Ronchetti I., Cigognetti C. Observations on the actin content of the rabbit myofibril. Biochem J. 1966 Jul;100(1):110–113. doi: 10.1042/bj1000110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIES R. E. A MOLECULAR THEORY OF MUSCLE CONTRACTION: CALCIUM-DEPENDENT CONTRACTIONS WITH HYDROGEN BOND FORMATION PLUS ATP-DEPENDENT EXTENSIONS OF PART OF THE MYOSIN-ACTIN CROSS-BRIDGES. Nature. 1963 Sep 14;199:1068–1074. doi: 10.1038/1991068a0. [DOI] [PubMed] [Google Scholar]
- DRAPER M. H., HODGE A. J. Electron-induced microincineration with the electron microscope. I. Distribution of residual mineral content in vertebrate striated muscle. Aust J Exp Biol Med Sci. 1950 Sep;28(5):549–557. doi: 10.1038/icb.1950.54. [DOI] [PubMed] [Google Scholar]
- EBASHI S., EBASHI F. A NEW PROTEIN COMPONENT PARTICIPATING IN THE SUPERPRECIPITATION OF MYOSIN B. J Biochem. 1964 Jun;55:604–613. doi: 10.1093/oxfordjournals.jbchem.a127933. [DOI] [PubMed] [Google Scholar]
- Ebashi S., Ebashi F., Kodama A. Troponin as the Ca++-receptive protein in the contractile system. J Biochem. 1967 Jul;62(1):137–138. doi: 10.1093/oxfordjournals.jbchem.a128628. [DOI] [PubMed] [Google Scholar]
- Ebashi S., Kodama A. A new protein factor promoting aggregation of tropomyosin. J Biochem. 1965 Jul;58(1):107–108. doi: 10.1093/oxfordjournals.jbchem.a128157. [DOI] [PubMed] [Google Scholar]
- HUXLEY H. E. ELECTRON MICROSCOPE STUDIES ON THE STRUCTURE OF NATURAL AND SYNTHETIC PROTEIN FILAMENTS FROM STRIATED MUSCLE. J Mol Biol. 1963 Sep;7:281–308. doi: 10.1016/s0022-2836(63)80008-x. [DOI] [PubMed] [Google Scholar]
- Katz A. M. Purification and properties of a tropomyosin-containing protein fraction that sensitizes reconstituted actomyosin to calcium-binding agents. J Biol Chem. 1966 Apr 10;241(7):1522–1529. [PubMed] [Google Scholar]
- LAKI K., MARUYAMA K., KOMINZ D. R. Evidence for the interaction between tropomyosin and actin. Arch Biochem Biophys. 1962 Aug;98:323–330. doi: 10.1016/0003-9861(62)90190-x. [DOI] [PubMed] [Google Scholar]
- LEVY H. M., RYAN E. M. EVIDENCE THAT CALCIUM ACTIVATES THE CONTRACTION OF ACTOMYOSIN BY OVERCOMING SUBSTRATE INHIBITION. Nature. 1965 Feb 13;205:703–705. doi: 10.1038/205703b0. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levy H. M., Ryan E. M. Heat inactivation of the relaxing site of actomyosin: prevention and reversal with dithiothreitol. Science. 1967 Apr 7;156(3771):73–74. doi: 10.1126/science.156.3771.73. [DOI] [PubMed] [Google Scholar]
- MARTONOSI A. Studies on actin. VII. Ultracentrifugal analysis of partially polymerized actin solutions. J Biol Chem. 1962 Sep;237:2795–2803. [PubMed] [Google Scholar]
- MARTONOSII A., MOLINO C. M., GERGELY J. THE BINDING OF DIVALENT CATIONS TO ACTIN. J Biol Chem. 1964 Apr;239:1057–1064. [PubMed] [Google Scholar]
- MARUYAMA K., ISHIKAWA Y. EFFECTS OF SOME SULFHYDRYL COMPOUNDS ON THE MAGNESIUM-ENHANCED ADENOSINETRIPHOSPHATASE ACTIVITY OF MYOSIN B. J Biochem. 1964 Oct;56:372–374. doi: 10.1093/oxfordjournals.jbchem.a128004. [DOI] [PubMed] [Google Scholar]
- NANNINGA L. B. The binding of magnesium, calcium, and chlorine ions to heavy and light meromyosin. Arch Biochem Biophys. 1957 Aug;70(2):346–366. doi: 10.1016/0003-9861(57)90122-4. [DOI] [PubMed] [Google Scholar]
- Otsuki I., Masaki T., Nonomura Y., Ebashi S. Periodic distribution of troponin along the thin filament. J Biochem. 1967 Jun;61(6):817–819. doi: 10.1093/oxfordjournals.jbchem.a128619. [DOI] [PubMed] [Google Scholar]
- PARKER C. J., Jr, GERGELY J. The role of calcium in the adensine triphosphatase activity of myofibrils and in the mechanism of the relaxing factor system of muscle. J Biol Chem. 1961 Feb;236:411–415. [PubMed] [Google Scholar]
- Pepe F. A. Some aspects of the structural organization of the myofibril as revealed by antibody--staining methods. J Cell Biol. 1966 Mar;28(3):505–525. doi: 10.1083/jcb.28.3.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SZENT-GYOERGYI A., KAMINER B. METIN AND METACTOMYOSIN. Proc Natl Acad Sci U S A. 1963 Dec;50:1033–1036. doi: 10.1073/pnas.50.6.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandow A. Excitation-contraction coupling in skeletal muscle. Pharmacol Rev. 1965 Sep;17(3):265–320. [PubMed] [Google Scholar]
- TONOMURA Y., YOSHIMURA J. Inhibition of myosin B-adenosinetriphosphatase by excess substrate. Arch Biochem Biophys. 1960 Sep;90:73–81. doi: 10.1016/0003-9861(60)90614-7. [DOI] [PubMed] [Google Scholar]
- WATANABE S., YASUI T. EFFECTS OF MAGNESIUM AND CALCIUM ON THE SUPERPRECIPITATION OF MYOSIN B. J Biol Chem. 1965 Jan;240:105–111. [PubMed] [Google Scholar]
- WEBER A., HERZ R., REISS I. On the mechanism of the relaxing effect of fragmented sarcoplasmic reticulum. J Gen Physiol. 1963 Mar;46:679–702. doi: 10.1085/jgp.46.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEBER A., HERZ R. Requirement for calcium in the synaeresis of myofibrils. Biochem Biophys Res Commun. 1961 Dec 20;6:364–368. doi: 10.1016/0006-291x(61)90146-2. [DOI] [PubMed] [Google Scholar]
- WEBER A., HERZ R. The binding of calcium to actomyosin systems in relation to their biological activity. J Biol Chem. 1963 Feb;238:599–605. [PubMed] [Google Scholar]
- WEBER A., WINICUR S. The role of calcium in the superprecipitation of actomyosin. J Biol Chem. 1961 Dec;236:3198–3202. [PubMed] [Google Scholar]
- WINEGRAD S. AUTORADIOGRAPHIC STUDIES OF INTRACELLULAR CALCIUM IN FROG SKELETAL MUSCLE. J Gen Physiol. 1965 Jan;48:455–479. doi: 10.1085/jgp.48.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe S., Staprans I. Purification of the relaxing protein of rabbit skeletal muscle. Proc Natl Acad Sci U S A. 1966 Aug;56(2):572–577. doi: 10.1073/pnas.56.2.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods E. F. The dissociation of tropomyosin by urea. J Mol Biol. 1966 Apr;16(2):581–584. doi: 10.1016/s0022-2836(66)80199-7. [DOI] [PubMed] [Google Scholar]
- Yasui B., Fuchs F., Briggs F. N. The role of the sulfhydryl groups of tropomyosin and troponin in the calcium control of actomyosin contractility. J Biol Chem. 1968 Feb 25;243(4):735–742. [PubMed] [Google Scholar]