Abstract
Vasopressin increases the net transport of sodium across the isolated urinary bladder of the toad by increasing the mobility of sodium ion within the tissue. This change is reflected in a decreased DC resistance of the bladder; identification of the permeability barrier which is affected localizes the site of action of vasopressin on sodium transport. Cells of the epithelial layer were impaled from the mucosal side with glass micropipettes while current pulses were passed through the bladder. The resulting voltage deflections across the bladder and between the micropipette and mucosal reference solution were proportional to the resistance across the entire bladder and across the mucosal or apical permeability barrier, respectively. The position of the exploring micropipette was not changed and vasopressin was added to the serosal medium. In 10 successful impalements, the apical permeability barrier contributed 54% of the initial total transbladder resistance, but 98% of the total resistance change following vasopressin occurred at this site. This finding provides direct evidence that vasopressin acts to increase ionic mobility selectively across the apical permeability barrier of the transporting cells of the toad bladder.
Full Text
The Full Text of this article is available as a PDF (956.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CHOI J. K. The fine structure of the urinary bladder of the toad, Bufo marinus. J Cell Biol. 1963 Jan;16:53–72. doi: 10.1083/jcb.16.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Civan M. M., Kedem O., Leaf A. Effect of vasopressin on toad bladder under conditions of zero net sodium transport. Am J Physiol. 1966 Sep;211(3):569–575. doi: 10.1152/ajplegacy.1966.211.3.569. [DOI] [PubMed] [Google Scholar]
- FINKELSTEIN A. ELECTRICAL EXCITABILITY OF ISOLATED FROG SKIN AND TOAD BLADDER. J Gen Physiol. 1964 Jan;47:545–565. doi: 10.1085/jgp.47.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRAZIER H. S., DEMPSEY E. F., LEAF A. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin. J Gen Physiol. 1962 Jan;45:529–543. doi: 10.1085/jgp.45.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRAZIER H. S. The electrical potential profile of the isolated toad bladder. J Gen Physiol. 1962 Jan;45:515–528. doi: 10.1085/jgp.45.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GATZY J. T., CLARKSON T. W. THE EFFECT OF MUCOSAL AND SEROSAL SOLUTION CATIONS ON BIOELECTRIC PROPERTIES OF THE ISOLATED TOAD BLADDER. J Gen Physiol. 1965 Mar;48:647–671. doi: 10.1085/jgp.48.4.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEAF A., ANDERSON J., PAGE L. B. Active sodium transport by the isolated toad bladder. J Gen Physiol. 1958 Mar 20;41(4):657–668. doi: 10.1085/jgp.41.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEAF A., DEMPSEY E. Some effects of mammalian neurohypophyseal hormones on metabolism and active transport of sodium by the isolated toad bladder. J Biol Chem. 1960 Jul;235:2160–2163. [PubMed] [Google Scholar]
- LEAF A., HAYS R. M. Permeability of the isolated toad bladder to solutes and its modification by vasopressin. J Gen Physiol. 1962 May;45:921–932. doi: 10.1085/jgp.45.5.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LING G., GERARD R. W. The normal membrane potential of frog sartorius fibers. J Cell Physiol. 1949 Dec;34(3):383–396. doi: 10.1002/jcp.1030340304. [DOI] [PubMed] [Google Scholar]
- PAK POY R. F., BENTLEY P. J. Fine structure of the epithelial cells of the toad urinary bladder. Exp Cell Res. 1960 Jun;20:235–237. doi: 10.1016/0014-4827(60)90246-9. [DOI] [PubMed] [Google Scholar]