Abstract
The efflux of glycerol-3H from mature R. pipiens oocytes was studied by extractive analysis and by quantitative radioautography using techniques suitable for diffusible solutes. Extractive analysis was used to determine the total cellular concentration of tracer, and radioautography, regional intracellular concentrations, at equilibrium and as a function of efflux time, tE. The efflux was resolvable into four kinetic fractions: cytoplasmic fast and slow fractions, and nuclear fast and slow fractions. The fast fractions represent freely diffusible glycerol in the two compartments; the solvent space accessible to glycerol is unity in the nucleus (germinal vesicle), but only 0.73 in the cytoplasm. The efflux of both fast fractions from the cell is determined by the permeability of the cortical membrane, with neither the nuclear membrane nor diffusion in the cytoplasm detectably slowing the flux. The permeability at 13.6°C is 2.2 x 10-5 cm/sec. The slow fractions leave the cell at about one-tenth the rate of the fast; the interpretation is that these fractions represent glycerol bound to impermeant cellular constituents. The size of these constituents is below the radioautographic resolution; in the cytoplasm, they appear not to be the yolk platelets. The extent of binding is about fourfold greater, per milliliter of compartment water, in the cytoplasm than in the germinal vesicle.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABELSON P. H., DURYEE W. R. Radioactive sodium permeability and exchange in frog eggs. Biol Bull. 1949 Jun;96(3):205–217. [PubMed] [Google Scholar]
- BATTIN W. T. The osmotic properties of nuclei isolated from amphibian oocytes. Exp Cell Res. 1959 Apr;17(1):59–75. doi: 10.1016/0014-4827(59)90152-1. [DOI] [PubMed] [Google Scholar]
- COONS A. H., LEDUC E. H., KAPLAN M. H. Localization of antigen in tissue cells. VI. The fate of injected foreign proteins in the mouse. J Exp Med. 1951 Feb;93(2):173–188. doi: 10.1084/jem.93.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUNTER A. S., HUNTER F. R. Studies of volume changes in the isolated amphibian germinal vesicle. Exp Cell Res. 1961 Jan;22:609–618. doi: 10.1016/0014-4827(61)90135-5. [DOI] [PubMed] [Google Scholar]
- KANNO Y., LOEWENSTEIN W. R. A STUDY OF THE NUCLEUS AND CELL MEMBRANES OF OOCYTES WITH AN INTRA-CELLULAR ELECTRODE. Exp Cell Res. 1963 Jun;31:149–166. doi: 10.1016/0014-4827(63)90164-2. [DOI] [PubMed] [Google Scholar]
- KEMP N. E. Electron microscopy of growing oocytes of Rana pipiens. J Biophys Biochem Cytol. 1956 May 25;2(3):281–292. doi: 10.1083/jcb.2.3.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEAF A., HAYS R. M. Permeability of the isolated toad bladder to solutes and its modification by vasopressin. J Gen Physiol. 1962 May;45:921–932. doi: 10.1085/jgp.45.5.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEV A. A. DETERMINATION OF ACTIVITY AND ACTIVITY COEFFICIENTS OF POTASSIUM AND SODIUM IONS IN FROG MUSCLE FIBRES. Nature. 1964 Mar 14;201:1132–1134. doi: 10.1038/2011132a0. [DOI] [PubMed] [Google Scholar]
- Ling G. N., Ochsenfeld M. M., Karreman G. Is the cell membrane a universal rate-limiting barrier to the movement of water between the living cell and its surrounding medium? J Gen Physiol. 1967 Jul;50(6):1807–1820. doi: 10.1085/jgp.50.6.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovtrup S. On the rate of water exchange across the surface of animal cells. J Theor Biol. 1963 Nov;5(3):341–359. doi: 10.1016/0022-5193(63)90082-1. [DOI] [PubMed] [Google Scholar]
- Morrill G. A., Rosenthal J., Watson D. E. Membrane permeability changes in amphibian eggs at ovulation. J Cell Physiol. 1966 Jun;67(3):375–381. doi: 10.1002/jcp.1040670303. [DOI] [PubMed] [Google Scholar]
- Morrill G. A. Water and electrolyte changes in amphibian eggs at ovulation. Exp Cell Res. 1965 Dec;40(3):664–667. doi: 10.1016/0014-4827(65)90245-4. [DOI] [PubMed] [Google Scholar]
- Morrill G. A., Watson D. E. Transmembrane electropotential changes in amphibian eggs at ovulation, activation and first cleavage. J Cell Physiol. 1966 Feb;67(1):85–92. doi: 10.1002/jcp.1040670110. [DOI] [PubMed] [Google Scholar]
- NAORA H., NAORA H., IZAWA M., ALLFREY V. G., MIRSKY A. E. Some observations on differences in composition between the nucleus and cytoplasm of the frog oocyte. Proc Natl Acad Sci U S A. 1962 May 15;48:853–859. doi: 10.1073/pnas.48.5.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OSTER H., KUNDT H. W., TAUGNER R. Methodische Untersuchungen zur autoradiographischen Darstellung wasserlöslicher Stoffe in der Niere. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1955;224(5-6):476–482. [PubMed] [Google Scholar]
- Ritzén M. A method for the autoradiographic determination of absolute specific radioactivity in cells. Exp Cell Res. 1967 Jan;45(1):250–252. doi: 10.1016/0014-4827(67)90132-2. [DOI] [PubMed] [Google Scholar]
- Rotunno C. A., Kowalewski V., Cereijido M. Nuclear spin resonance evidence for complexing of sodium in frog skin. Biochim Biophys Acta. 1967 Feb 1;135(1):170–173. doi: 10.1016/0005-2736(67)90022-3. [DOI] [PubMed] [Google Scholar]
- VILLEGAS R., CAPUTO C., VILLEGAS L. Diffusion barrieres in the squid nerve fiber. The axolemma and the Schwann layer. J Gen Physiol. 1962 Nov;46:245–255. doi: 10.1085/jgp.46.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]