Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1968 Jun 1;51(6):731–758. doi: 10.1085/jgp.51.6.731

Differentiation of Nerve Terminals in the Crayfish Opener Muscle and Its Functional Significance

George D Bittner 1
PMCID: PMC2201236  PMID: 4300149

Abstract

Junctional potentials (jp's) recorded from superficial distal fibers of the crayfish opener muscle are up to 50 times larger than jp' in superficial central fibers when the single motor axon that innervates the muscle is stimulated at a frequency of 1/sec or less. At 80/sec, in contrast, central jp's are up to four times larger than those observed in distal fibers. The tension produced by single muscle fibers of either type is directly proportional to the integral of the time-voltage curve minus an excitation-contraction coupling threshold of 3 mv. Distal fibers therefore produce almost all the total muscle tension at low frequencies of stimulation and central fibers add an increasingly greater contribution as their nerve endings begin to facilitate in response to increased rate of motor discharge. Differentiation of muscle membrane characteristics (input resistance, space constant, time constant) cannot account for these differences in facilitation ratios. The mechanism of neuronal differentiation is not based upon the size or effectiveness of transmitter quanta, since equal sized jp's have equal variances;: mjp sizes and variances are also equal. No differences were found between fiber types in rates of transmitter mobilization, density of innervation, or the relationship between transmitter release and terminal depolarization. Single terminals on distal fibers were found to release transmitter with a greater probability than central terminals. More effective invasion of distal terminals by the nerve impulse at low frequencies can account for the difference.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATWOOD H. L. DIFFERENCES IN MUSCLE FIBRE PROPERTIES AS A FACTOR IN "FAST" AND "SLOW" CONTRACTION IN CARCINUS. Comp Biochem Physiol. 1963 Sep;10:17–32. doi: 10.1016/0010-406x(63)90099-9. [DOI] [PubMed] [Google Scholar]
  2. Atwood H. L. Excitation and inhibition in crab muscle fibres. Comp Biochem Physiol. 1965 Dec;16(4):409–426. doi: 10.1016/0010-406x(65)90306-3. [DOI] [PubMed] [Google Scholar]
  3. Atwood H. L., Hoyle G. A further study of the paradox phenomenon of crustacean muscle. J Physiol. 1965 Nov;181(2):225–234. doi: 10.1113/jphysiol.1965.sp007757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BARLOW H. B., FITZHUGH R., KUFFLER S. W. Change of organization in the receptive fields of the cat's retina during dark adaptation. J Physiol. 1957 Aug 6;137(3):338–354. doi: 10.1113/jphysiol.1957.sp005817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BOISTEL J., FATT P. Membrane permeability change during inhibitory transmitter action in crustacean muscle. J Physiol. 1958 Nov 10;144(1):176–191. doi: 10.1113/jphysiol.1958.sp006094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DEL CASTILLO J., KATZ B. Quantal components of the end-plate potential. J Physiol. 1954 Jun 28;124(3):560–573. doi: 10.1113/jphysiol.1954.sp005129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DUDEL J., KUFFLER S. W. Mechanism of facilitation at the crayfish neuromuscular junction. J Physiol. 1961 Mar;155:530–542. doi: 10.1113/jphysiol.1961.sp006645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DUDEL J., KUFFLER S. W. Presynaptic inhibition at the crayfish neuromuscular junction. J Physiol. 1961 Mar;155:543–562. doi: 10.1113/jphysiol.1961.sp006646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DUDEL J., KUFFLER S. W. The quantal nature of transmission and spontaneous miniature potentials at the crayfish neuromuscular junction. J Physiol. 1961 Mar;155:514–529. doi: 10.1113/jphysiol.1961.sp006644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DUDEL J. PRESYNAPTIC INHIBITION OF THE EXCITATORY NERVE TERMINAL IN THE NEUROMUSCULAR JUNCTION OF THE CRAYFISH. Pflugers Arch Gesamte Physiol Menschen Tiere. 1963 Sep 9;277:537–557. [PubMed] [Google Scholar]
  11. FATT P., KATZ B. The electrical properties of crustacean muscle fibres. J Physiol. 1953 Apr 28;120(1-2):171–204. doi: 10.1113/jphysiol.1953.sp004884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gage P. W., Quastel D. M. Dual effect of potassium on transmitter release. Nature. 1965 May 8;206(984):625–626. doi: 10.1038/206625a0. [DOI] [PubMed] [Google Scholar]
  13. HOYLE G., WIERSMA C. A. Coupling of membrane potential to contraction in crustacean muscles. J Physiol. 1958 Oct 31;143(3):441–453. doi: 10.1113/jphysiol.1958.sp006070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HOYLE G., WIERSMA C. A. Excitation at neuromuscular junctions in Crustacea. J Physiol. 1958 Oct 31;143(3):403–425. doi: 10.1113/jphysiol.1958.sp006068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KATZ B., THESLEFF S. On the factors which determine the amplitude of the miniature end-plate potential. J Physiol. 1957 Jul 11;137(2):267–278. doi: 10.1113/jphysiol.1957.sp005811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. WIERSMA C. A., BOBBERT A. C. Membrane potential changes on activation in crustacean muscle fibers. Acta Physiol Pharmacol Neerl. 1961 Jun;10:51–72. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES