Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Jul;151(1):229–236. doi: 10.1128/jb.151.1.229-236.1982

Amino acid uptake and energy coupling dependent on photosynthesis in Anacystis nidulans.

J Lee-Kaden, W Simonis
PMCID: PMC220231  PMID: 6806240

Abstract

The photoautotrophic cyanobacterium Anacystis nidulans was used to investigate the membrane transport of branched-chain, neutral amino acids and its dependence on photosynthetic reactions. The uptake of alpha-amino [1-14C]isobutyric acid and L-[1-14C]leucine followed Michaelis, Menten kinetics and resulted in an energy-dependent accumulation. As in bacteria, different uptake systems for neutral amino acids were present: two DAG (D-alanine, aminoisobutyric acid, and glycine) systems responsible for uptake of alpha-amino [1-14C]isobutyric acid, and one LIV (leucine, isoleucine, and valine) system, responsible for uptake of leucine. The low-affinity DAG system seemed to be dependent on the presence of Na+ ions. Uptake was enhanced by white light and by monochromatic light of 630 nm. In far red light (717 nm) with and without nitrogen flushing, considerable uptake dependent on light intensity and inhibition by dibromothymoquinone and by high concentrations of KCN were observed. Therefore, the energy generated by photosystem I reactions only could perform this membrane transport. The proton translocator carbonylcyanide m-chlorophenylhydrazone and N,N-dicyclohexylcarbodiimide as an ATPase inhibitor reduced amino acid uptake to a high degree. A pH dependence of aminoisobutyric acid and leucine uptake was obvious, with a maximum at pH 6 to 7 and some at a pH as high as 9.5. At higher pH, increasing concentrations of Na+ K+ and also of triphenylmethylphosphonium ions inhibited the transport of aminoisobutyric acid. These findings are consistent with the assumption that ATP from photosynthetic reactions drives a membrane-bound proton-translocating ATPase producing a proton motive force, consisting at higher pH chiefly in a delta psi amount, which promotes a secondary active H+ or Na+/amino acid symport carrier.

Full text

PDF
229

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. J., Oxender D. L. Genetic separation of high- and low-affinity transport systems for branched-chain amino acids in Escherichia coli K-12. J Bacteriol. 1978 Oct;136(1):168–174. doi: 10.1128/jb.136.1.168-174.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berger E. A., Heppel L. A. Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli. J Biol Chem. 1974 Dec 25;249(24):7747–7755. [PubMed] [Google Scholar]
  3. Bisalputra T., Brown D. L., Weier T. E. Possible respiratory sites in a blue-green alga Nostoc sphaericum as demonstrated by potassium tellurite and tetranitro-blue tetrazolium reduction. J Ultrastruct Res. 1969 Apr;27(2):182–197. [PubMed] [Google Scholar]
  4. Falkner G., Horner F. pH Changes in the Cytoplasm of the Blue-Green Alga Anacystis nidulans Caused by Light-dependent Proton Flux into the Thylakoid Space. Plant Physiol. 1976 Dec;58(6):717–718. doi: 10.1104/pp.58.6.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Faust R. G., Orcutt A. R., Prazma T. U. Active amino acid and sugar transport by a unicellular blue-green alga. Comp Biochem Physiol A Comp Physiol. 1974 Jun 1;48(2):403–406. doi: 10.1016/0300-9629(74)90721-x. [DOI] [PubMed] [Google Scholar]
  6. Fein J. E., MacLeod R. A. Characterization of neutral amino acid transport in a marine pseudomonad. J Bacteriol. 1975 Dec;124(3):1177–1190. doi: 10.1128/jb.124.3.1177-1190.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Friedberg I., Kaback H. R. Electrochemical proton gradient in Micrococcus lysodeikticus cells and membrane vesicles. J Bacteriol. 1980 May;142(2):651–658. doi: 10.1128/jb.142.2.651-658.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Golecki J. R. Studies on ultrastructure and composition of cell walls of the cyanobacterium Anacystis nidulans. Arch Microbiol. 1977 Jul 26;114(1):35–41. doi: 10.1007/BF00429627. [DOI] [PubMed] [Google Scholar]
  9. Guffanti A. A., Blanco R., Krulwich T. A. A requirement for ATP for beta-galactoside transport by Bacillus alcalophilus. J Biol Chem. 1979 Feb 25;254(4):1033–1037. [PubMed] [Google Scholar]
  10. Guffanti A. A., Susman P., Blanco R., Krulwich T. A. The protonmotive force and alpha-aminoisobutyric acid transport in an obligately alkalophilic bacterium. J Biol Chem. 1978 Feb 10;253(3):708–715. [PubMed] [Google Scholar]
  11. Hoshino T. Transport systems for branched-chain amino acids in Pseudomonas aeruginosa. J Bacteriol. 1979 Sep;139(3):705–712. doi: 10.1128/jb.139.3.705-712.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kiritani K., Ohnishi K. Repression and inhibition of transport systems for branched-chain amino acids in Salmonella typhimurium. J Bacteriol. 1977 Feb;129(2):589–598. doi: 10.1128/jb.129.2.589-598.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lanyi J. K. The role of Na+ in transport processes of bacterial membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):377–397. doi: 10.1016/0304-4157(79)90011-x. [DOI] [PubMed] [Google Scholar]
  14. Mitchell P. Performance and conservation of osmotic work by proton-coupled solute porter systems. J Bioenerg. 1973 Jan;4(1):63–91. doi: 10.1007/BF01516051. [DOI] [PubMed] [Google Scholar]
  15. Padan E., Schuldiner S. Energy transduction in the photosynthetic membranes of the cyanobacterium (blue-green alga) P-lectonema boryanum. J Biol Chem. 1978 May 10;253(9):3281–3286. [PubMed] [Google Scholar]
  16. Paschinger H. DCCD induced sodium uptake by Anacystis nidulans. Arch Microbiol. 1977 Jun 20;113(3):285–291. doi: 10.1007/BF00492037. [DOI] [PubMed] [Google Scholar]
  17. Pearce S. M., Hildebrandt V. A., Lee T. Third system for neutral amino acid transport in a marine pseudomonad. J Bacteriol. 1977 Apr;130(1):37–47. doi: 10.1128/jb.130.1.37-47.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Plate C. A. Requirement for membrane potential in active transport of glutamine by Escherichia coli. J Bacteriol. 1979 Jan;137(1):221–225. doi: 10.1128/jb.137.1.221-225.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Raboy B., Padan E. Active transport of glucose and alpha-methylglucoside in the cyanobacterium Plectonema boryanum. J Biol Chem. 1978 May 10;253(9):3287–3291. [PubMed] [Google Scholar]
  20. Raven J. A. Nutrient transport in microalgae. Adv Microb Physiol. 1980;21:47–226. doi: 10.1016/s0065-2911(08)60356-2. [DOI] [PubMed] [Google Scholar]
  21. Reizer J., Grossowicz N. Properties of alpha-aminoisobutyric acid transport in a thermophilic microorganism. J Bacteriol. 1974 May;118(2):414–424. doi: 10.1128/jb.118.2.414-424.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Scholes P., Mitchell P., Moyle J. The polarity of proton translocation in some photosynthetic microorganisms. Eur J Biochem. 1969 Apr;8(3):450–454. doi: 10.1111/j.1432-1033.1969.tb00548.x. [DOI] [PubMed] [Google Scholar]
  23. Stanier R. Y., Cohen-Bazire G. Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol. 1977;31:225–274. doi: 10.1146/annurev.mi.31.100177.001301. [DOI] [PubMed] [Google Scholar]
  24. Stephenson M. C., Midgley M., Dawes E. A. Transport of alpha-aminoisobutyrate by cells and membrane vesicles of Pseudomonas fluorescens. Biochim Biophys Acta. 1978 Jun 2;509(3):519–536. doi: 10.1016/0005-2736(78)90245-6. [DOI] [PubMed] [Google Scholar]
  25. Wan A. Y., Floyd K. W., Hatch M. T. Inhibition of glutamate transport in Synechococcus cedrorum by glutamine. J Bacteriol. 1975 Nov;124(2):1039–1040. doi: 10.1128/jb.124.2.1039-1040.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wood J. M. Leucine transport in Escherichia coli. The resolution of multiple transport systems and their coupling to metabolic energy. J Biol Chem. 1975 Jun 25;250(12):4477–4485. [PubMed] [Google Scholar]
  27. Yamato I., Ohki M., Anraku Y. Genetic and biochemical studies of transport systems for branched-chain amino acids in Escherichia coli. J Bacteriol. 1979 Apr;138(1):24–32. doi: 10.1128/jb.138.1.24-32.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES