Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Jul;151(1):303–310. doi: 10.1128/jb.151.1.303-310.1982

Mutations releasing mitochondrial biogenesis from glucose repression in Saccharomyces cerevisiae.

E Böker-Schmitt, S Francisci, R J Schweyen
PMCID: PMC220242  PMID: 7045078

Abstract

Mutants which exhibit a constitutive glucose-insensitive expression of respiratory activity were selected by use of a triphenyltetrazolium staining technique. These mutants lack carbon catabolite repression, as was demonstrated by measuring cytochromes, the activity of succinate cytochrome c reduction, total cellular respiration, mitochondrial protein, and DNA synthesis. High growth rates of mutant cells in glucose medium and normal fermentative CO2 production exclude the possibility that this carbon catabolite insensitivity of mitochondrial functions is merely due to a decreased utilization of glucose. Accordingly, the activities of the two cytoplasmic enzymes measured, maltase and malate synthase, were glucose repressible to the same extent in the mutants as in the wild type. The mutations are dominant and showed nuclear inheritance. The results are discussed in terms of carbon catabolite-regulated expression of genes involved in the biogenesis of mitochondria.

Full text

PDF
303

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARRIGONI O., SINGER T. P. Limitations of the phenazine methosulphate assay for succinic and related dehydrogenases. Nature. 1962 Mar 31;193:1256–1258. doi: 10.1038/1931256a0. [DOI] [PubMed] [Google Scholar]
  2. Bachofen V., Schweyen R. J., Wolf K., Kaudewitz F. Quantitative selection of respiratory deficient mutants in yeasts by triphenyltetrazolium chloride. Z Naturforsch B. 1972 Mar;27(3):252–256. doi: 10.1515/znb-1972-0307. [DOI] [PubMed] [Google Scholar]
  3. Baldacci G., Falcone C., Francisci S., Frontali L., Palleschi C. Mitochondrial protein-synthesizing machinery in Saccharomyces cerevisiae grown in different metabolic conditions. Variability of seryl-tRNA and alanyl-tRNA isoacceptor patterns. Eur J Biochem. 1979 Jul;98(1):181–186. doi: 10.1111/j.1432-1033.1979.tb13175.x. [DOI] [PubMed] [Google Scholar]
  4. Bleeg H. S., Bak A. L., Christiansen C., Smith K. E., Stenderup A. Mitochondrial DNA and glucose repression in yeast. Biochem Biophys Res Commun. 1972 Apr 28;47(2):524–530. doi: 10.1016/0006-291x(72)90746-2. [DOI] [PubMed] [Google Scholar]
  5. Ciriacy M. A yeast mutant with glucose-resistant formation of mitochondrial enzymes. Mol Gen Genet. 1978 Feb 27;159(3):329–335. doi: 10.1007/BF00268270. [DOI] [PubMed] [Google Scholar]
  6. De Deken R. H. The Crabtree effect: a regulatory system in yeast. J Gen Microbiol. 1966 Aug;44(2):149–156. doi: 10.1099/00221287-44-2-149. [DOI] [PubMed] [Google Scholar]
  7. HOLZER H., HOLZER E., SCHULTZ G. Zusammenhang zwischen Wachstum und aerober Gärung. I. Versuche mit Hefezellen. Biochem Z. 1955;326(6):385–404. [PubMed] [Google Scholar]
  8. Ibrahim N. G., Stuchell R. N., Beattie D. S. Formation of the yeast mitochondrial membrane. 2. Effects of glucose repression on mitochondrial protein synthesis. Eur J Biochem. 1973 Jul 16;36(2):519–527. doi: 10.1111/j.1432-1033.1973.tb02938.x. [DOI] [PubMed] [Google Scholar]
  9. Jayaraman J., Cotman C., Mahler H. R., Sharp C. W. Biochemical correlates of respiratory deficiency. VII. Glucose repression. Arch Biochem Biophys. 1966 Sep 26;116(1):224–251. doi: 10.1016/0003-9861(66)90029-4. [DOI] [PubMed] [Google Scholar]
  10. Kovac L., Groot G. S., Racker E. Translocation of protons and potassium ions across the mitochondrial membrane of respiring and respiration-deficient yeasts. Biochim Biophys Acta. 1972 Jan 21;256(1):55–65. doi: 10.1016/0005-2728(72)90162-4. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lang B., Burger G., Doxiadis I., Thomas D. Y., Bandlow W., Kaudewitz F. A simple method for the large-scale preparation of mitochondria from microorganisms. Anal Biochem. 1977 Jan;77(1):110–121. doi: 10.1016/0003-2697(77)90295-0. [DOI] [PubMed] [Google Scholar]
  13. MAGASANIK B. Catabolite repression. Cold Spring Harb Symp Quant Biol. 1961;26:249–256. doi: 10.1101/sqb.1961.026.01.031. [DOI] [PubMed] [Google Scholar]
  14. Michels C. A., Romanowski A. Pleiotropic glucose repression-resistant mutation in Saccharomyces carlesbergensis. J Bacteriol. 1980 Aug;143(2):674–679. doi: 10.1128/jb.143.2.674-679.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Perlman P. S., Mahler H. R. Derepression of mitochondria and their enzymes in yeast: regulatory aspects. Arch Biochem Biophys. 1974 May;162(1):248–271. doi: 10.1016/0003-9861(74)90125-8. [DOI] [PubMed] [Google Scholar]
  16. Polakis E. S., Bartley W. Changes in the enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources. Biochem J. 1965 Oct;97(1):284–297. doi: 10.1042/bj0970284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SLATER T. F., SAWYER B., STRAEULI U. STUDIES ON SUCCINATE-TETRAZOLIUM REDUCTASE SYSTEMS. III. POINTS OF COUPLING OF FOUR DIFFERENT TETRAZOLIUM SALTS. Biochim Biophys Acta. 1963 Nov 8;77:383–393. doi: 10.1016/0006-3002(63)90513-4. [DOI] [PubMed] [Google Scholar]
  18. Schweyen R. J., Kaudewitz F. Differentiation between mitochondrial and cytoplasmic protein synthesis in vivo by use of a temperature-sensitive mutant of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1971 Sep 17;44(6):1351–1355. doi: 10.1016/s0006-291x(71)80234-6. [DOI] [PubMed] [Google Scholar]
  19. Schweyen R. J., Kaudewitz F. On the formation of rho- petites in yeast. I. Multifactorial mitochondrial crosses (rho+ X rho+) involving a mutation conferring temperature-sensitivity of rho factor stability. Mol Gen Genet. 1976 Dec 22;149(3):311–322. doi: 10.1007/BF00268533. [DOI] [PubMed] [Google Scholar]
  20. Schweyen R. J., Steyrer U., Kaudewitz F. Mapping of mitochondrial genes in Saccharomyces cerevisiae. Populations and pedigree analysis of retention or loss of four genetic markers in Rho-cells. Mol Gen Genet. 1976 Jul 23;146(2):117–132. doi: 10.1007/BF00268080. [DOI] [PubMed] [Google Scholar]
  21. Siemens T. V., Nichols D. L., Zitomer R. S. Effect of mitochondrial functions on synthesis of yeast cytochrome c. J Bacteriol. 1980 May;142(2):499–507. doi: 10.1128/jb.142.2.499-507.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Van Wijk R., Ouwehand J., van den Bos T., Koningsberger V. V. Induction and catabolite repression of alpha-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis. Biochim Biophys Acta. 1969 Jul 22;186(1):178–191. doi: 10.1016/0005-2787(69)90501-2. [DOI] [PubMed] [Google Scholar]
  23. Wolf K., Dujon B., Slonimski P. P. Mitochondrial genetics. V. Multifactorial mitochondrial crosses involving a mutation conferring paromomycin-resistance in Saccharomyces cerevisiae. Mol Gen Genet. 1973 Sep 5;125(1):53–90. doi: 10.1007/BF00292983. [DOI] [PubMed] [Google Scholar]
  24. Zimmermann F. K., Eaton N. R. Genetics of induction and catabolite repression of Maltese synthesis in Saccharomyces cerevisiae. Mol Gen Genet. 1974;134(3):261–272. doi: 10.1007/BF00267720. [DOI] [PubMed] [Google Scholar]
  25. Zimmermann F. K., Kaufmann I., Rasenberger H., Haubetamann P. Genetics of carbon catabolite repression in Saccharomycess cerevisiae: genes involved in the derepression process. Mol Gen Genet. 1977 Feb 28;151(1):95–103. doi: 10.1007/BF00446918. [DOI] [PubMed] [Google Scholar]
  26. Zimmermann F. K., Scheel I. Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression. Mol Gen Genet. 1977 Jul 7;154(1):75–82. doi: 10.1007/BF00265579. [DOI] [PubMed] [Google Scholar]
  27. Zitomer R. S., Montgomery D. L., Nichols D. L., Hall B. D. Transcriptional regulation of the yeast cytochrome c gene. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3627–3631. doi: 10.1073/pnas.76.8.3627. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES