Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Jul;151(1):334–342. doi: 10.1128/jb.151.1.334-342.1982

Effect of inositol starvation on the in vitro syntheses of mannan and N-acetylglucosaminylpyrophosphoryldolichol in Saccharomyces cerevisiae.

B A Hanson, R L Lester
PMCID: PMC220245  PMID: 6177681

Abstract

An early consequence of starvation for inositol in yeast is inhibition of synthesis of the major cell wall components mannan and glucan. In looking for the mechanism of this inhibition, we found that the activity of the enzyme catalyzing the synthesis of N-acetylglucosaminylpyrophosphoryldolichol was diminished in particular membrane preparations from cells starved for inositol. This loss of reactivity was observed under a variety of in vitro assay conditions and could be restored by the addition of phosphatidylinositol but not by other phosphoinositol-containing sphingolipids known to occur in yeast. When assayed in the presence of high concentrations of Triton X-100, enzyme preparations from both control and inositol-starved cells required phosphatidylinositol for maximal activity. Since this enzyme catalyzed an early step in the synthesis of mannan that is N-linked to protein, a reasonable hypothesis is that inhibition of mannan synthesis in inositol-starved cells results from the depletion of the necessary cofactor phosphatidylinositol.

Full text

PDF
334

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angus W. W., Lester R. L. Turnover of inositol and phosphorus containing lipids in Saccharomyces cerevisiae; extracellular accumulation of glycerophosphorylinositol derived from phosphatidylinositol. Arch Biochem Biophys. 1972 Aug;151(2):483–495. doi: 10.1016/0003-9861(72)90525-5. [DOI] [PubMed] [Google Scholar]
  2. Ballou C. Structure and biosynthesis of the mannan component of the yeast cell envelope. Adv Microb Physiol. 1976;14(11):93–158. doi: 10.1016/s0065-2911(08)60227-1. [DOI] [PubMed] [Google Scholar]
  3. Becker G. W., Lester R. L. Changes in phospholipids of Saccharomyces cerevisiae associated with inositol-less death. J Biol Chem. 1977 Dec 10;252(23):8684–8691. [PubMed] [Google Scholar]
  4. CHALLINOR S. W., POWER D. M., TONGE R. J. EFFECTS OF INOSITOL-DEFICIENCY ON YEAST WITH PARTICULAR REFERENCE TO CHEMICAL COMPOSITION OF THE CELL AND OF THE CELL WALL. Nature. 1964 Jul 18;203:250–251. doi: 10.1038/203250a0. [DOI] [PubMed] [Google Scholar]
  5. Cortat M., Matile P., Kopp F. Intracellular localization of mannan synthetase activity in budding baker's yeast. Biochem Biophys Res Commun. 1973 Jul 17;53(2):482–489. doi: 10.1016/0006-291x(73)90687-6. [DOI] [PubMed] [Google Scholar]
  6. Culbertson M. R., Donahue T. F., Henry S. A. Control of inositol biosynthesis in Saccharomyces cerevisiae; inositol-phosphate synthetase mutants. J Bacteriol. 1976 Apr;126(1):243–250. doi: 10.1128/jb.126.1.243-250.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Culbertson M. R., Henry S. A. Inositol-requiring mutants of Saccharomyces cerevisiae. Genetics. 1975 May;80(1):23–40. doi: 10.1093/genetics/80.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DAWSON R. M., WHITE R. W., FREINKEL N. The fate of mesoinositol during the growth of an inositol-dependent yeast Kloeckera brevis. J Gen Microbiol. 1962 Feb;27:331–339. doi: 10.1099/00221287-27-2-331. [DOI] [PubMed] [Google Scholar]
  9. Dominguez A., Villanueva J. R., Sentandreu R. Inositol deficiency in Saccharomyces cerevisiae NCYC 86. Antonie Van Leeuwenhoek. 1978;44(1):25–34. doi: 10.1007/BF00400074. [DOI] [PubMed] [Google Scholar]
  10. GHOSH A., CHARALAMPOUS F., SISON Y., BORER R. Metabolic function of myo-inositol. I. Cytological and chemical alterations in yeast resulting from inositol deficiency. J Biol Chem. 1960 Sep;235:2522–2528. [PubMed] [Google Scholar]
  11. Hanson B. A., Lester R. L. Effects of inositol starvation on phospholipid and glycan syntheses in Saccharomyces cerevisiae. J Bacteriol. 1980 Apr;142(1):79–89. doi: 10.1128/jb.142.1.79-89.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hayashi E., Hasegawa R., Tomita T. Accumulation of neutral lipids in Saccharomyces carlsbergensis by myo-inositol deficiency and its mechanism. Reciprocal regulation of yeast acetyl-CoA carboxylase by fructose bisphosphate and citrate. J Biol Chem. 1976 Sep 25;251(18):5759–5769. [PubMed] [Google Scholar]
  13. Heifetz A., Elbein A. D. Solubilization and properties of mannose and N-acetylglucosamine transferases involved in formation of polyprenyl-sugar intermediates. J Biol Chem. 1977 May 10;252(9):3057–3063. [PubMed] [Google Scholar]
  14. Heifetz A., Keenan R. W., Elbein A. D. Mechanism of action of tunicamycin on the UDP-GlcNAc:dolichyl-phosphate Glc-NAc-1-phosphate transferase. Biochemistry. 1979 May 29;18(11):2186–2192. doi: 10.1021/bi00578a008. [DOI] [PubMed] [Google Scholar]
  15. Henry S. A., Atkinson K. D., Kolat A. I., Culbertson M. R. Growth and metabolism of inositol-starved Saccharomyces cerevisiae. J Bacteriol. 1977 Apr;130(1):472–484. doi: 10.1128/jb.130.1.472-484.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Henry S. A., Donahue T. F., Culbertson M. R. Selection of spontaneous mutants by inositol starvation in yeast. Mol Gen Genet. 1975 Dec 30;143(1):5–11. doi: 10.1007/BF00269415. [DOI] [PubMed] [Google Scholar]
  17. Jakovcic S., Getz G. S., Rabinowitz M., Jakob H., Swift H. Cardiolipin content of wild type and mutant yeasts in relation to mitochondrial function and development. J Cell Biol. 1971 Mar;48(3):490–502. doi: 10.1083/jcb.48.3.490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnston J. M., Paltauf F. Lipid metabolism in inositol-deficient yeast, Saccharomyces carlsbergensis. II. Incorporation of labeled precursors into lipids by whole cells and activities of some enzymes involved in lipid formation. Biochim Biophys Acta. 1970 Dec 15;218(3):431–440. [PubMed] [Google Scholar]
  19. Keller R. K., Adair W. L., Jr, Ness G. C. Studies on the regulation of glycoprotein biosynthesis. An investigation of the rate-limiting steps of dolichyl phosphate biosynthesis. J Biol Chem. 1979 Oct 25;254(20):9966–9969. [PubMed] [Google Scholar]
  20. Keller R. K., Boon D. Y., Crum F. C. N-Acetylglucosamine- 1 -phosphate transferase from hen oviduct: solubilization, characterization, and inhibition by tunicamycin. Biochemistry. 1979 Sep 4;18(18):3946–3952. doi: 10.1021/bi00585a016. [DOI] [PubMed] [Google Scholar]
  21. Kocourek J., Ballou C. E. Method for fingerprinting yeast cell wall mannans. J Bacteriol. 1969 Dec;100(3):1175–1181. doi: 10.1128/jb.100.3.1175-1181.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lehle L., Tanner W. Membrane-bound mannosyl transferase in yeast glycoprotein biosynthesis. Biochim Biophys Acta. 1974 May 20;350(1):225–235. doi: 10.1016/0005-2744(74)90220-4. [DOI] [PubMed] [Google Scholar]
  23. Lehle L., Tanner W. The specific site of tunicamycin inhibition in the formation of dolichol-bound N-acetylglucosamine derivatives. FEBS Lett. 1976 Nov 15;72(1):167–170. doi: 10.1016/0014-5793(76)80922-2. [DOI] [PubMed] [Google Scholar]
  24. Lewin L. M. Effects of meso-inositol deficiency on some important biological and chemical characteristics of yeast. J Gen Microbiol. 1965 Nov;41(2):215–224. doi: 10.1099/00221287-41-2-215. [DOI] [PubMed] [Google Scholar]
  25. Matile P. Inositol deficiency resulting in death: an explanation of its occurrence in Neurospora crassa. Science. 1966 Jan 7;151(3706):86–88. doi: 10.1126/science.151.3706.86. [DOI] [PubMed] [Google Scholar]
  26. Nakajima T., Ballou C. E. Characterization of the carbohydrate fragments obtained from Saccharomyces cerevisiae mannan by alkaline degradation. J Biol Chem. 1974 Dec 10;249(23):7679–7684. [PubMed] [Google Scholar]
  27. Nakajima T., Ballou C. E. Structure of the linkage region between the polysaccharide and protein parts of Saccharomyces cerevisiae mannan. J Biol Chem. 1974 Dec 10;249(23):7685–7694. [PubMed] [Google Scholar]
  28. Paltauf F., Johnston J. M. Lipid metabolism in inositol-deficient yeast, Saccharomyces carlsbergensis. I. Influence of different carbon sources on the lipid composition of deficient cells. Biochim Biophys Acta. 1970 Dec 15;218(3):424–430. [PubMed] [Google Scholar]
  29. Plouhar P. L., Bretthauer R. K. Enhancement by acidic phospholipids of the rate of synthesis of N-acetylglucosaminylpyrophosphoryldolichol from dolichol phosphate in rat lung membranes. Biochem Biophys Res Commun. 1979 Oct 29;90(4):1186–1193. doi: 10.1016/0006-291x(79)91162-8. [DOI] [PubMed] [Google Scholar]
  30. Power D. M., Challinor S. W. The effects of inositol-deficiency on the chemical composition of the yeast cell wall. J Gen Microbiol. 1969 Feb;55(2):169–176. doi: 10.1099/00221287-55-2-169. [DOI] [PubMed] [Google Scholar]
  31. RIDGWAY G. J., DOUGLAS H. C. Distribution of inositol in subcellular fractions of yeast cells. J Bacteriol. 1958 Jan;75(1):85–88. doi: 10.1128/jb.75.1.85-88.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. RIDGWAY G. J., DOUGLAS H. C. Unbalanced growth of yeast due to inositol deficiency. J Bacteriol. 1958 Aug;76(2):163–166. doi: 10.1128/jb.76.2.163-166.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reuvers F., Habets-Willems C., Reinking A., Boer P. Glycolipid intermediates involved in the transfer of N-acetylglucosamine to endogenous proteins in a yeast membrane preparation. Biochim Biophys Acta. 1977 Mar 25;486(3):541–552. doi: 10.1016/0005-2760(77)90104-7. [DOI] [PubMed] [Google Scholar]
  34. SMITH R. H. A study of the role of inosito in the nutrition of Nematospora gossypii and Saccharomyces carlsbergensis. J Gen Microbiol. 1951 Oct;5(4):772–780. doi: 10.1099/00221287-5-4-772. [DOI] [PubMed] [Google Scholar]
  35. STRAUSS B. S. Cell death and unbalanced growth in Neurospora. J Gen Microbiol. 1958 Jun;18(3):658–669. doi: 10.1099/00221287-18-3-658. [DOI] [PubMed] [Google Scholar]
  36. Shafai T., Lewin L. M. Effects of myo-inositol deficiency upon the lipid composition of the yeast, Saccharomyces carlsbergensis. Biochim Biophys Acta. 1968 Jul 1;152(4):787–790. doi: 10.1016/0005-2760(68)90127-6. [DOI] [PubMed] [Google Scholar]
  37. Smith S. W., Lester R. L. Inositol phosphorylceramide, a novel substance and the chief member of a major group of yeast sphingolipids containing a single inositol phosphate. J Biol Chem. 1974 Jun 10;249(11):3395–3405. [PubMed] [Google Scholar]
  38. Steiner S., Lester R. L. Metabolism of diphosphoinositide and triphosphoinositide in Saccharomyces cerevisiae. Biochim Biophys Acta. 1972 Jan 27;260(1):82–87. doi: 10.1016/0005-2760(72)90076-8. [DOI] [PubMed] [Google Scholar]
  39. Stewart P. R. Analytical methods for yeasts. Methods Cell Biol. 1975;12:111–147. doi: 10.1016/s0091-679x(08)60955-3. [DOI] [PubMed] [Google Scholar]
  40. Talwalkar R. T., Lester R. L. The response of diphosphoinositide and triphosphoinostitide to perturbations of the adenylate energy charge in cells of Saccharomyces cerevisiae. Biochim Biophys Acta. 1973 Jun 21;306(3):412–421. doi: 10.1016/0005-2760(73)90180-x. [DOI] [PubMed] [Google Scholar]
  41. Waechter C. J., Harford J. B. Evidence for the enzymatic transfer of N-acetylglucosamine from UDP--N-acetylglucosamine into dolichol derivative and glycoproteins by calf brain membranes. Arch Biochem Biophys. 1977 May;181(1):185–198. doi: 10.1016/0003-9861(77)90497-0. [DOI] [PubMed] [Google Scholar]
  42. Waechter C. J., Lennarz W. J. The role of polyprenol-linked sugars in glycoprotein synthesis. Annu Rev Biochem. 1976;45:95–112. doi: 10.1146/annurev.bi.45.070176.000523. [DOI] [PubMed] [Google Scholar]
  43. Waechter C. J., Lester R. L. Differential regulation of the N-methyl transferases responsible for phosphatidylcholine synthesis in Saccharomyces cerevisiae. Arch Biochem Biophys. 1973 Sep;158(1):401–410. doi: 10.1016/0003-9861(73)90637-1. [DOI] [PubMed] [Google Scholar]
  44. Waechter C. J., Lester R. L. Regulation of phosphatidylcholine biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1971 Mar;105(3):837–843. doi: 10.1128/jb.105.3.837-843.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wells G. B., Lester R. L. Rapid separation of acetylated oligosaccharides by reverse-phase high-pressure liquid chromatography. Anal Biochem. 1979 Aug;97(1):184–190. doi: 10.1016/0003-2697(79)90344-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES