Abstract
Cells of the yeast Saccharomyces cerevisiae are normally impermeable to the purine nucleosides adenosine and 5'-deoxy-5'-methylthioadenosine (MTA), a product of polyamine biosynthesis. cordycepin-sensitive, adenosine-utilizing strains of S. cerevisiae were able to use MTA to fulfill an auxotrophic requirement for purine. Cordycepin-sensitive strains carrying a met5 mutation were also able to use MTA as a source of methionine. These MTA-utilizing strains of S. cerevisiae should be useful for metabolic studies of the fate of MTA.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson J. M., Roth R. Adenosine utilization in cordycepin-sensitive mutants of Saccharomyces cerevisiae. J Bacteriol. 1976 Nov;128(2):689–691. doi: 10.1128/jb.128.2.689-691.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Backlund P. S., Jr, Smith R. A. Methionine synthesis from 5'-methylthioadenosine in rat liver. J Biol Chem. 1981 Feb 25;256(4):1533–1535. [PubMed] [Google Scholar]
- Baxter C., Coscia C. J. In vitro synthesis of spermidine in the higher plant, Vinca rosea. Biochem Biophys Res Commun. 1973 Sep 5;54(1):147–154. doi: 10.1016/0006-291x(73)90901-7. [DOI] [PubMed] [Google Scholar]
- Ferro A. J., Barrett A., Shapiro S. K. Kinetic properties and the effect of substrate analogues on 5'-methylthioadenosine nucleosidase from Escherichia coli. Biochim Biophys Acta. 1976 Jul 8;438(2):487–494. doi: 10.1016/0005-2744(76)90264-3. [DOI] [PubMed] [Google Scholar]
- Knudsen R. C., Moore K., Yall I. Uptake and utilization of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine in an adenine mutant of Saccharomyces cerevisiae. J Bacteriol. 1969 May;98(2):629–636. doi: 10.1128/jb.98.2.629-636.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MUDD S. H. Enzymatic cleavage of S-adenosylmethionine. J Biol Chem. 1959 Jan;234(1):87–92. [PubMed] [Google Scholar]
- Murphy J. T., Spence K. D. Transport of S-adenosylmethionine in Saccharomyces cerevisiae. J Bacteriol. 1972 Feb;109(2):499–504. doi: 10.1128/jb.109.2.499-504.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pegg A. E., Williams-Ashman H. G. Phosphate-stimulated breakdown of 5'-methylthioadenosine by rat ventral prostate. Biochem J. 1969 Nov;115(2):241–247. doi: 10.1042/bj1150241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlenk F., Zydek-Cwick C. R., Hutson N. K. Enzymatic deamination of adenosine sulfur compounds. Arch Biochem Biophys. 1971 Jan;142(1):144–149. doi: 10.1016/0003-9861(71)90268-2. [DOI] [PubMed] [Google Scholar]
- Shapiro S. K., Schlenk F. Conversion of 5'-methylthioadenosine into S-adenosylmethionine by yeast cells. Biochim Biophys Acta. 1980 Dec 1;633(2):176–180. doi: 10.1016/0304-4165(80)90403-1. [DOI] [PubMed] [Google Scholar]
- Tabor C. W., Tabor H. 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu Rev Biochem. 1976;45:285–306. doi: 10.1146/annurev.bi.45.070176.001441. [DOI] [PubMed] [Google Scholar]
- Walker R. D., Duerre J. A. S-adenosylhomocysteine metabolism in various species. Can J Biochem. 1975 Mar;53(3):312–319. doi: 10.1139/o75-044. [DOI] [PubMed] [Google Scholar]
- Yall I., Norrell S. A., Joseph R., Knudsen R. C. Effect of L-methionine and S-adenosylmethionine on growth of an adenine mutant of Saccharomyces cerevisiae. J Bacteriol. 1967 May;93(5):1551–1558. doi: 10.1128/jb.93.5.1551-1558.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
