Abstract
The suitability of frog skin glands as a model for the study of secretory mechanisms in exocrine glands was explored. Periodic voltage clamp was used to determine continually the short-circuit current, chord conductance, and electromotive force of frog skin during neural and pharmacological activation of the skin glands. Both the chord conductance and the short-circuit current increased with glandular activation; the temporal dissociation of these increases suggests that there are at least two separate components to the secretory response. The sensitivity of the secretory electrical changes to changes in the ionic composition of the bathing solutions supports the notion of electrogenic chloride active transport as being basic to the activity of the exocrine glands.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bayliss W. M., Bradford J. R. On the Electrical Phenomena accompanying Secretion in the Skin of the Frog. J Physiol. 1886 Jun;7(3):217–229. doi: 10.1113/jphysiol.1886.sp000217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- González C., Sánchez J., Concha J. Changes in potential difference and short-circuit current produced by electrical stimulation in a nerve-skin preparation of the toad. Biochim Biophys Acta. 1966 May 12;120(1):186–188. doi: 10.1016/0926-6585(66)90297-4. [DOI] [PubMed] [Google Scholar]
- Holzgreve H., Martinez J. R., Vogel A. Micropuncture and histologic study of submaxillary glands of young rats. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;290(2):134–143. doi: 10.1007/BF00363691. [DOI] [PubMed] [Google Scholar]
- KOEFOED-JOHNSEN V., USSING H. H., ZERAHN K. The origin of the short-circuit current in the adrenaline stimulated frog skin. Acta Physiol Scand. 1952;27(1):38–48. doi: 10.1111/j.1748-1716.1953.tb00922.x. [DOI] [PubMed] [Google Scholar]
- LEAF A., ANDERSON J., PAGE L. B. Active sodium transport by the isolated toad bladder. J Gen Physiol. 1958 Mar 20;41(4):657–668. doi: 10.1085/jgp.41.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LUNDBERG A. Anionic dependence of secretion and secretory potentials in the perfused sublingual gland. Acta Physiol Scand. 1957 Oct 10;40(2-3):101–112. doi: 10.1111/j.1748-1716.1957.tb01480.x. [DOI] [PubMed] [Google Scholar]
- Leb D. E., Edwards C., Lindley B. D., Hoshiko T. Interaction between the effects of inside and outside Na and K on bullfrog skin potential. J Gen Physiol. 1965 Nov;49(2):309–320. doi: 10.1085/jgp.49.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PICKLES V. R. The effects of 5-hydroxytryptamine on the movement of sodium and potassium through the isolated amphibian skin. J Physiol. 1957 Oct 30;138(3):495–505. doi: 10.1113/jphysiol.1957.sp005866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paganelli C. V., Hong S. K. Effect of 5-hydroxytryptamine on sodium transport across bullfrog skin. Protoplasma. 1967;63(1):62–65. [PubMed] [Google Scholar]
- SCHOFFENIELS E., SALEE M. L. THE EFFECTS OF THE ELECTRICAL STIMULATION OF THE BRACHIAL PLEXUS ON THE POTENTIAL DIFFERENCE OF FROG SKIN. Comp Biochem Physiol. 1965 Apr;14:587–602. doi: 10.1016/0010-406x(65)90248-3. [DOI] [PubMed] [Google Scholar]
- SHARE L., USSING H. H. EFFECT OF POTASSIUM ON THE MOVEMENT OF WATER ACROSS THE ISOLATED AMPHIBIAN SKIN. Acta Physiol Scand. 1965 May-Jun;64:109–118. doi: 10.1111/j.1748-1716.1965.tb04159.x. [DOI] [PubMed] [Google Scholar]
- Welsh J. H., Zipf J. B. 5-hydroxytryptamine in frog's skin. J Cell Physiol. 1966 Aug;68(1):25–34. doi: 10.1002/jcp.1040680105. [DOI] [PubMed] [Google Scholar]
