Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1969 Jun 1;53(6):685–703. doi: 10.1085/jgp.53.6.685

The Influence of External Potassium on the Inactivation of Sodium Currents in the Giant Axon of the Squid, Loligo pealei

William J Adelman Jr 1, Yoram Palti 1
PMCID: PMC2202877  PMID: 5783008

Abstract

Isolated giant axons were voltage-clamped in seawater solutions having constant sodium concentrations of 230 mM and variable potassium concentrations of from zero to 210 mM. The inactivation of the initial transient membrane current normally carried by Na+ was studied by measuring the Hodgkin-Huxley h parameter as a function of time. It was found that h reaches a steady-state value within 30 msec in all solutions. The values of h , τh, αh,and βh as functions of membrane potential were determined for various [K o]. The steady-state values of the h parameter were found to be inversely related, while the time constant, τh, was directly related to external K+ concentration. While the absolute magnitude as well as the slopes of the h vs. membrane potential curves were altered by varying external K+, only the magnitude and not the shape of the corresponding τh curves was altered. Values of the two rate constants, αh and βh, were calculated from h and τh values. αh is inversely related to [Ko] while βh is directly related to [Ko] for hyperpolarizing membrane potentials and is independent of [Ko] for depolarizing membrane potentials. Hodgkin-Huxley equations relating αh and βh to Em were rewritten so as to account for the observed effects of [Ko]. It is concluded that external potassium ions have an inactivating effect on the initial transient membrane conductance which cannot be explained solely on the basis of potassium membrane depolarization.

Full Text

The Full Text of this article is available as a PDF (1,015.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAKER P. F., HODGKIN A. L., MEVES H. THE EFFECT OF DILUTING THE INTERNAL SOLUTION ON THE ELECTRICAL PROPERTIES OF A PERFUSED GIANT AXON. J Physiol. 1964 Apr;170:541–560. doi: 10.1113/jphysiol.1964.sp007348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blaustein M. P., Goldman D. E. The action of certain polyvalent cations on the voltage-clamped lobster axon. J Gen Physiol. 1968 Mar;51(3):279–291. doi: 10.1085/jgp.51.3.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chandler W. K., Meves H. Incomplete sodium inactivation in internally perfused giant axons from Loligo forbesi. J Physiol. 1966 Oct;186(2):121P–122P. [PubMed] [Google Scholar]
  4. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HODGKIN A. L., HUXLEY A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):449–472. doi: 10.1113/jphysiol.1952.sp004717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HUXLEY A. F. Ion movements during nerve activity. Ann N Y Acad Sci. 1959 Aug 28;81:221–246. doi: 10.1111/j.1749-6632.1959.tb49311.x. [DOI] [PubMed] [Google Scholar]
  7. TAYLOR R. E. Effect of procaine on electrical properties of squid axon membrane. Am J Physiol. 1959 May;196(5):1071–1078. doi: 10.1152/ajplegacy.1959.196.5.1071. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES