Abstract
The action potential duration (APD) of isolated guinea pig papillary muscle is directly related to the medium glucose concentration regardless of the gas mixture with which it is in equilibrium. The APD can be maintained at control value for many hours by a glucose concentration of 50 mM in the complete absence of oxygen. Following reduction of the APD by incubation of the muscle in medium containing 5 mM glucose, adjustment of the glucose concentration to 50 mM will cause restoration of normal APD. Phlorizin has been shown to competitively interfere with the effect of glucose on the APD and insulin to prevent or reverse the effect of phlorizin. Nonmetabolizable sugars cannot produce glucose-like effects on the APD. Adrenaline, noradrenaline, and isopropylnoradrenaline increased the reduced APD of papillary muscles incubated in the absence of oxygen in a medium containing 5 mM glucose coincident with an increase in contractile force. The effect of isopropylnoradrenaline was blocked by acetylcholine and propranolol. In the presence of iodoacetate and 2-deoxyglucose, isopropylnoradrenaline increased contractile force but not the reduced APD. Aminophylline was found to produce changes in the reduced APD similar to those caused by the sympathomimetic amines. The findings clearly support the hypothesis that anaerobic metabolism utilizing either glycogen or exogenous glucose is capable of maintaining normal transmembrane electrical activity in guinea pig papillary muscle.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BATTAGLIA F. C., RANDLE P. J. Regulation of glucose uptake by muscle. 4. The specificity of monosaccharide-transport systems in rat-diaphragm muscle. Biochem J. 1960 May;75:408–416. doi: 10.1042/bj0750408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BUTCHER R. W., SUTHERLAND E. W. Adenosine 3',5'-phosphate in biological materials. I. Purification and properties of cyclic 3',5'-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3',5'-phosphate in human urine. J Biol Chem. 1962 Apr;237:1244–1250. [PubMed] [Google Scholar]
- Diedrich D. F. Competitive inhibition of intestinal glucose transport by phlorizin analogs. Arch Biochem Biophys. 1966 Nov;117(2):248–256. doi: 10.1016/0003-9861(66)90409-7. [DOI] [PubMed] [Google Scholar]
- Drummond G. I., Duncan L., Hertzman E. Effect of epinephrine on phosphorylase b kinase in perfused rat hearts. J Biol Chem. 1966 Dec 25;241(24):5899–5903. [PubMed] [Google Scholar]
- FISHER R. B., LINDSAY D. B. The action of insulin on the penetration of sugars into the perfused heart. J Physiol. 1956 Mar 28;131(3):526–541. doi: 10.1113/jphysiol.1956.sp005480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HENDERSON M. J. THE UPTAKE OF GLUCOSE INTO CELLS AND THE ROLE OF INSULIN IN GLUCOSE TRANSPORT. Can J Biochem. 1964 Jun;42:933–944. doi: 10.1139/o64-105. [DOI] [PubMed] [Google Scholar]
- HESS M. E., HAUGAARD N. The effect of epinephrine and aminophylline on the phosphorylase activity of perfused contracting heart muscle. J Pharmacol Exp Ther. 1958 Feb;122(2):169–175. [PubMed] [Google Scholar]
- HOLLANDER P. B., WEBB J. L. Metabolic aspects of the relationship between the contractility and membrane potentials of the rat atrium. Circ Res. 1956 Sep;4(5):618–626. doi: 10.1161/01.res.4.5.618. [DOI] [PubMed] [Google Scholar]
- Horn R. S., Aronson C. E., Hess M. E., Haugaard N. The effect of metabolic inhibitors on the response of the perfused rat heart to epinephrine. Biochem Pharmacol. 1967 Nov;16(11):2109–2116. doi: 10.1016/0006-2952(67)90008-1. [DOI] [PubMed] [Google Scholar]
- KIPNIS D. M., CORI C. F. Studies of tissue permeability. V. The penetration and phosphorylation of 2-deoxyglucose in the rat diaphragm. J Biol Chem. 1959 Jan;234(1):171–177. [PubMed] [Google Scholar]
- KIPNIS D. M., HELMREICH E., CORI C. F. Studies of tissue permeability. IV. The distribution of glucose between plasma and muscle. J Biol Chem. 1959 Jan;234(1):165–170. [PubMed] [Google Scholar]
- KUKOVETZ W. R., HESS M. E., SHANFELD J., HAUGAARD N. The action of sympathomimetic amines on isometric contraction and phosphorylase activity of the isolated rat heart. J Pharmacol Exp Ther. 1959 Oct;127:122–127. [PubMed] [Google Scholar]
- MACLEOD D. P., DANIEL E. E. INFLUENCE OF GLUCOSE ON THE TRANSMEMBRANE ACTION POTENTIAL OF ANOXIC PAPILLARY MUSCLE. J Gen Physiol. 1965 May;48:887–899. doi: 10.1085/jgp.48.5.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MORGAN H. E., HENDERSON M. J., REGEN D. M., PARK C. R. Regulation of glucose uptake in muscle. I. The effects of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rats. J Biol Chem. 1961 Feb;236:253–261. [PubMed] [Google Scholar]
- MORGAN H. E., REGEN D. M., PARK C. R. IDENTIFICATION OF A MOBILE CARRIER-MEDIATED SUGAR TRANSPORT SYSTEM IN MUSCLE. J Biol Chem. 1964 Feb;239:369–374. [PubMed] [Google Scholar]
- RALL T. W., SUTHERLAND E. W. Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem. 1958 Jun;232(2):1065–1076. [PubMed] [Google Scholar]
- VILLAR-PALASI C., LARNER J. A uridine coenzyme-linked pathway of glycogen synthesis in muscle. Biochim Biophys Acta. 1958 Nov;30(2):449–449. doi: 10.1016/0006-3002(58)90086-6. [DOI] [PubMed] [Google Scholar]
- VILLAR-PALASI C., LARNER J. Insulin treatment and increased UDPG-glycogen transglucosylase activity in muscle. Arch Biochem Biophys. 1961 Sep;94:436–442. doi: 10.1016/0003-9861(61)90071-6. [DOI] [PubMed] [Google Scholar]
- VINCENT N. H., ELLIS S. Inhibitory effect of acetylcholine on glycogenolysis in the isolated guinea-pig heart. J Pharmacol Exp Ther. 1963 Jan;139:60–68. [PubMed] [Google Scholar]
- WALLON G., CORABOEUF E., GARGOUIL Y. M. [Effect of anoxia on the mechanical and electrical activity of the isolated and perfused rabbit heart]. C R Seances Soc Biol Fil. 1960;154:678–680. [PubMed] [Google Scholar]
- WICK A. N., DRURY D. R., NAKADA H. I., WOLFE J. B. Localization of the primary metabolic block produced by 2-deoxyglucose. J Biol Chem. 1957 Feb;224(2):963–969. [PubMed] [Google Scholar]
- WILLIAMSON J. R. METABOLIC EFFECTS OF EPINEPHRINE IN THE ISOLATED, PERFUSED RAT HEART. I. DISSOCIATION OF THE GLYCOGENOLYTIC FROM THE METABOLIC STIMULATORY EFFECT. J Biol Chem. 1964 Sep;239:2721–2729. [PubMed] [Google Scholar]
- WOODBURY J. W., BRADY A. J. Intracellular recording from moving tissues with a flexibly mounted ultramicroelectrode. Science. 1956 Jan 20;123(3186):100–101. doi: 10.1126/science.123.3186.100-a. [DOI] [PubMed] [Google Scholar]
- YANG W. C. ANAEROBIC FUNCTIONAL ACTIVITY OF ISOLATED RABBIT ATRIA. Am J Physiol. 1963 Oct;205:781–784. doi: 10.1152/ajplegacy.1963.205.4.781. [DOI] [PubMed] [Google Scholar]