Abstract
Calcium influx was studied in monolayers of HeLa cells to determine the number of exchangeable and nonexchangeable pools and the rate constant of the different fluxes. Of the two exchangeable pools, one has a very fast rate of exchange with a half-time of 1.54 min, a compartment size of 1.06 mµmoles/mg cell protein, and an exchange rate of 474 µµmoles/(mg protein\·min). This compartment is likely to be extracellular and could represent calcium exchange between the extracellular fluids and surface binding sites of the cell membrane. The second exchangeable pool has a half-time of exchange of 31 min, a compartment size of 2.69 mµmoles/mg cell protein (0.224 millimole calcium/kg cell water), and a flux rate of 0.0546 µµmole cm-2 sec-1. This compartment can be considered to be the intracellular pool of exchangeable calcium. An unexchangeable intracellular pool of calcium of 3.05 mµmoles/mg cell protein was detected implying that only 45% of the intracellular calcium is exchangeable. In addition, a large extracellular pool of calcium has been found to be unexchangeable, probably a part of the cell glycocalix. Finally, dinitrophenol 10-3 M does not affect the slow component of the calcium uptake curve which brings new evidence that calcium entry into the cell is not a metabolically dependent process.
Full Text
The Full Text of this article is available as a PDF (740.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BIANCHI C. P., SHANES A. M. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J Gen Physiol. 1959 Mar 20;42(4):803–815. doi: 10.1085/jgp.42.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borle A. B., Briggs F. N. Microdetermination of calcium in biological material by automatic fluorometric titration. Anal Chem. 1968 Feb;40(2):339–344. doi: 10.1021/ac60258a056. [DOI] [PubMed] [Google Scholar]
- Borle A. B. Effects of purified parathyroid hormone on the calcium metabolism of monkey kidney cells. Endocrinology. 1968 Dec;83(6):1316–1322. doi: 10.1210/endo-83-6-1316. [DOI] [PubMed] [Google Scholar]
- Borle A. B. Kinetic analyses of calcium movements in HeLa cell cultures. II. Calcium efflux. J Gen Physiol. 1969 Jan;53(1):57–69. doi: 10.1085/jgp.53.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COSMOS E. Factors influencing movement of calcium in vertebrate striated muscle. Am J Physiol. 1958 Dec;195(3):705–711. doi: 10.1152/ajplegacy.1958.195.3.705. [DOI] [PubMed] [Google Scholar]
- FENN W. O., GILBERT D. L. Calcium equilibrium in muscle. J Gen Physiol. 1957 Jan 20;40(3):393–408. doi: 10.1085/jgp.40.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOVIER W. C., HOLLAND W. C. EFFECTS OF OUABAIN ON TISSUE CALCIUM AND CALCIUM EXCHANGE IN PACEMAKER OF TURTLE HEART. Am J Physiol. 1964 Jul;207:195–198. doi: 10.1152/ajplegacy.1964.207.1.195. [DOI] [PubMed] [Google Scholar]
- HARRIS E. J. The output of 45Ca from frog muscle. Biochim Biophys Acta. 1957 Jan;23(1):80–87. doi: 10.1016/0006-3002(57)90287-1. [DOI] [PubMed] [Google Scholar]
- KEYNES R. D., LEWIS P. R. The intracellular calcium contents of some invertebrate nerves. J Physiol. 1956 Nov 28;134(2):399–407. doi: 10.1113/jphysiol.1956.sp005652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OYAMA V. I., EAGLE H. Measurement of cell growth in tissue culture with a phenol reagent (folin-ciocalteau). Proc Soc Exp Biol Med. 1956 Feb;91(2):305–307. doi: 10.3181/00379727-91-22245. [DOI] [PubMed] [Google Scholar]
- WINEGRAD S., SHANES A. M. Calcium flux and contractility in guinea pig atria. J Gen Physiol. 1962 Jan;45:371–394. doi: 10.1085/jgp.45.3.371. [DOI] [PMC free article] [PubMed] [Google Scholar]