Abstract
The hatchetfish, Gasteropelecus, possesses large pectoral fin adductor muscles whose simultaneous contraction enables the fish to dart upwards at the approach of a predator. These muscles can be excited by either Mauthner fiber. In the medulla, each Mauthner fiber forms axo-axonic synapses on four "giant fibers," two on each side of the midline. Each pair of giant fibers innervates ipsilateral motoneurons controlling the pectoral fin adductor muscles. Mauthner fibers and giant fibers can be penetrated simultaneously by microelectrodes close to the synapses between them. Electrophysiological evidence indicates that transmission from Mauthner to giant fiber is chemically mediated. Under some conditions miniature postsynaptic potentials (PSP's) are observed, suggesting quantal release of transmitter. However, relatively high frequency stimulation reduces PSP amplitude below that of the miniature potentials, but causes no complete failures of PSP's. Thus quantum size is reduced or postsynaptic membrane is desensitized. Ramp currents in Mauthner fibers that rise too slowly to initiate spikes can evoke responses in giant fibers that appear to be asynchronous PSP's. Probably both spikes and ramp currents act on the same secretory mechanism. A single Mauthner fiber spike is followed by prolonged depression of transmission; also PSP amplitude is little affected by current pulses that markedly alter presynaptic spike height. These findings suggest that even a small spike releases most of an immediately available store of transmitter. If so, the probability of release by a single spike is high for any quantum of transmitter within this store.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENNETT M. V. NERVOUS FUNCTION AT THE CELLULAR LEVEL. Annu Rev Physiol. 1964;26:289–340. doi: 10.1146/annurev.ph.26.030164.001445. [DOI] [PubMed] [Google Scholar]
- BLACKMAN J. G., GINSBORG B. L., RAY C. On the quantal release of the transmitter at a sympathetic synapse. J Physiol. 1963 Jul;167:402–415. doi: 10.1113/jphysiol.1963.sp007158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. V., Pappas G. D., Giménez M., Nakajima Y. Physiology and ultrastructure of electrotonic junctions. IV. Medullary electromotor nuclei in gymnotid fish. J Neurophysiol. 1967 Mar;30(2):236–300. doi: 10.1152/jn.1967.30.2.236. [DOI] [PubMed] [Google Scholar]
- Bennett M. V. Physiology of electrotonic junctions. Ann N Y Acad Sci. 1966 Jul 14;137(2):509–539. doi: 10.1111/j.1749-6632.1966.tb50178.x. [DOI] [PubMed] [Google Scholar]
- HAGIWARA S., TASAKI I. A study on the mechanism of impulse transmission across the giant synapse of the squid. J Physiol. 1958 Aug 29;143(1):114–137. doi: 10.1113/jphysiol.1958.sp006048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATZ B., MILEDI R. THE EFFECT OF CALCIUM ON ACETYLCHOLINE RELEASE FROM MOTOR NERVE TERMINALS. Proc R Soc Lond B Biol Sci. 1965 Feb 16;161:496–503. doi: 10.1098/rspb.1965.0017. [DOI] [PubMed] [Google Scholar]
- KEYNES R. D., MARTINS-FERREIRA H. Membrane potentials in the electroplates of the electric eel. J Physiol. 1953 Feb 27;119(2-3):315–351. doi: 10.1113/jphysiol.1953.sp004849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz B., Miledi R. A study of synaptic transmission in the absence of nerve impulses. J Physiol. 1967 Sep;192(2):407–436. doi: 10.1113/jphysiol.1967.sp008307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz B., Miledi R. Tetrodotoxin and neuromuscular transmission. Proc R Soc Lond B Biol Sci. 1967 Jan 31;167(1006):8–22. doi: 10.1098/rspb.1967.0010. [DOI] [PubMed] [Google Scholar]
- Katz B., Miledi R. The effect of temperature on the synaptic delay at the neuromuscular junction. J Physiol. 1965 Dec;181(3):656–670. doi: 10.1113/jphysiol.1965.sp007790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kusano K. Further study of the relationship between pre- and postsynaptic potentials in the squid giant synapse. J Gen Physiol. 1968 Aug;52(2):326–345. doi: 10.1085/jgp.52.2.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kusano K., Livengood D. R., Werman R. Correlation of transmitter release with membrane properties of the presynaptic fiber of the squid giant synapse. J Gen Physiol. 1967 Dec;50(11):2579–2601. doi: 10.1085/jgp.50.11.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OTSUKA M., ENDO M., NONOMURA Y. Presynaptic nature of neuromuscular depression. Jpn J Physiol. 1962 Dec 15;12:573–584. doi: 10.2170/jjphysiol.12.573. [DOI] [PubMed] [Google Scholar]
- Thomas R. C., Wilson V. J. Marking single neurons by staining with intracellular recording microelectrodes. Science. 1966 Mar 25;151(3717):1538–1539. doi: 10.1126/science.151.3717.1538. [DOI] [PubMed] [Google Scholar]
- WATANABE A., GRUNDFEST H. Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons. J Gen Physiol. 1961 Nov;45:267–308. doi: 10.1085/jgp.45.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wachtel H., Kandel E. R. A direct synaptic connection mediating both excitation and inhibition. Science. 1967 Dec 1;158(3805):1206–1208. doi: 10.1126/science.158.3805.1206. [DOI] [PubMed] [Google Scholar]